High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuhui Li, Guolin Wan, Yongqian Zhu, Jingyu Yang, Yan-Fang Zhang, Jinbo Pan, Shixuan Du
{"title":"High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics","authors":"Yuhui Li, Guolin Wan, Yongqian Zhu, Jingyu Yang, Yan-Fang Zhang, Jinbo Pan, Shixuan Du","doi":"10.1038/s41467-024-53864-4","DOIUrl":null,"url":null,"abstract":"<p>Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS<sub>2</sub>-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53864-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS2-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.

Abstract Image

用于二维纳米电子学的范德华介电质的高通量筛选和机器学习分类
范德瓦(vdW)电介质因其洁净的界面而有望提高基于二维(2D)半导体的纳米级场效应晶体管(FET)的性能。二维场效应晶体管理想的 vdW 电介质需要高介电常数以及与二维半导体适当的带对齐。然而,高质量的电介质仍然稀缺。在此,我们采用拓扑尺度算法,从材料项目数据库中筛选由零维(0D)、一维(1D)和二维图案组成的 vdW 材料。高通量第一原理计算得出了 189 种 0D、81 种 1D 和 252 种 2D vdW 材料的带隙和介电性能。其中,9 种极具潜力的候选介电材料适合用于基于 MoS2 的场效应晶体管。元素普遍性分析表明,含有强电负性阴离子和重阳离子的材料更有可能成为有前途的电介质。此外,我们还开发了一种用于筛选电介质的高精度两步式机器学习(ML)分类器。通过实施主动学习框架,我们又成功鉴定出 49 种有前景的 vdW 电介质。这项工作提供了丰富的 vdW 电介质候选清单和高精度 ML 筛选模型,有助于未来二维场效应晶体管的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信