{"title":"High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics","authors":"Yuhui Li, Guolin Wan, Yongqian Zhu, Jingyu Yang, Yan-Fang Zhang, Jinbo Pan, Shixuan Du","doi":"10.1038/s41467-024-53864-4","DOIUrl":null,"url":null,"abstract":"<p>Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS<sub>2</sub>-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53864-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS2-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.