Beyond the Triple Bond: Unlocking Dinitrogen Activation with Tai-lored Superbase Phosphines

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Cherumuttathu Hariharan Suresh, V. U. Krishnapriya
{"title":"Beyond the Triple Bond: Unlocking Dinitrogen Activation with Tai-lored Superbase Phosphines","authors":"Cherumuttathu Hariharan Suresh, V. U. Krishnapriya","doi":"10.1039/d4dt02703e","DOIUrl":null,"url":null,"abstract":"Activating atmospheric dinitrogen (N2<small><sub></sub></small>), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)<small><sub>3</sub></small>P) and imidazolin-2-methylidene ((ImCH)<small><sub>3</sub></small>P) to facilitate N2 activation and subsequent hydrazine (H<small><sub>2</sub></small>NNH<small><sub>2</sub></small>) formation. Us-ing density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal/mol). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for hypervalency of these phosphines lead to substantial N<small><sub>2</sub></small> activation in bis-phosphine-N<small><sub>2</sub></small> complexes, where N<small><sub>2</sub></small> is \"sand-wiched\" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)<small><sub>3</sub></small>P forms an exothermic sandwich complex with N<small><sub>2</sub></small>, stabilized by hydrogen bonding between the ImN- substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfers lead to the formation of a bis-phosphine-hydrazine (H<small><sub>2</sub></small>NNH<small><sub>2</sub></small>) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall trans-formation suggest its potential feasibility under optimized conditions. This theoretical exploration highlights the promise of super-base phosphines as a strategy for metal-free N<small><sub>2</sub></small> activation, opening doors for the development of more efficient and sustainable ni-trogen fixation and utilization methods.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02703e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Activating atmospheric dinitrogen (N2), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)3P) and imidazolin-2-methylidene ((ImCH)3P) to facilitate N2 activation and subsequent hydrazine (H2NNH2) formation. Us-ing density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal/mol). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for hypervalency of these phosphines lead to substantial N2 activation in bis-phosphine-N2 complexes, where N2 is "sand-wiched" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)3P forms an exothermic sandwich complex with N2, stabilized by hydrogen bonding between the ImN- substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfers lead to the formation of a bis-phosphine-hydrazine (H2NNH2) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall trans-formation suggest its potential feasibility under optimized conditions. This theoretical exploration highlights the promise of super-base phosphines as a strategy for metal-free N2 activation, opening doors for the development of more efficient and sustainable ni-trogen fixation and utilization methods.
超越三键:利用太湖超碱基膦实现二氮活化
大气中的二氮(N2)是一种具有极强三键的分子,激活这种分子仍然是化学领域的一大挑战。本理论研究探讨了超碱基膦的潜力,特别是那些用咪唑啉-2-亚胺((ImN)3P)和咪唑啉-2-亚甲基((ImCH)3P)装饰的膦,以促进 N2 的活化和随后肼(H2NNH2)的形成。我们在 M06L/6-311++G(d,p) 水平上利用密度泛函理论(DFT)研究了这些膦与 N2 之间的相互作用。单膦-N2 复合物表现出弱的非共价相互作用(-0.6 至 -7.1 kcal/mol)。值得注意的是,两种超碱基膦也能与 N2 形成高能超价络合物,尽管能量要高得多。这些膦的超基性和潜在的高价性导致 N2 在双膦-N2 复合物中被大量活化,在这种复合物中,N2 通过高价 P-N 键被 "沙织 "在两个膦分子之间。在所研究的膦中,只有 (ImN)3P 与 N2 形成了放热的夹心复合物,并通过 ImN- 取代基与中心 N2 分子之间的氢键而稳定下来。从 (ImN)3P 到 N2 的两步放热氢转移途径导致形成双膦二胺(HNNH)夹心复合物。随后的氢转移导致形成双膦-肼(H2NNH2)复合物,这一过程虽然是内热的,但却表现出可以克服的活化障碍。这种整体转化所需的能量相对较低,这表明它在优化条件下具有潜在的可行性。这一理论探索凸显了超级碱基膦作为一种无金属氮活化策略的前景,为开发更高效、更可持续的氮固定和利用方法打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信