Higher temperatures exacerbate effects of antibiotics on methanogenesis in freshwater sediment

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
E. Bollinger, P. Schwilden, F. Y. Lai, R. Schulz, M. Bundschuh, S. Filker
{"title":"Higher temperatures exacerbate effects of antibiotics on methanogenesis in freshwater sediment","authors":"E. Bollinger, P. Schwilden, F. Y. Lai, R. Schulz, M. Bundschuh, S. Filker","doi":"10.1038/s43247-024-01828-3","DOIUrl":null,"url":null,"abstract":"Methane (CH4) emissions from natural systems are rising in a concerning manner with an incomplete understanding of its drivers. Recently, chemical stressors such as antibiotics have been suggested as a thus far overlooked factor increasing methanogenesis in freshwaters. Since usage and toxicological impact of antibiotics could increase in a warming climate, we assessed the temperature-dependence of antibiotic effects on methanogenesis. In this light, we conducted anaerobic incubations with freshwater sediment at 10, 15, and 20 °C in presence of a mixture of five antibiotics at field-relevant concentrations. Weekly measurements of CH4 showed a strong temperature dependence of antibiotic effects by changing effect sizes, directions and dynamics. While antibiotics reduced CH4 production at 10 °C, methanogenesis was elevated at 15 °C with the most pronounced increase occurring at 20 °C. Furthermore, antibiotics changed the prokaryotic assemblage at all temperatures and effect patterns of CH4 producing Methanomicrobia strongly followed the patterns observed for methanogenesis. While analyses of compound-specific stable isotopes and the metatranscriptome suggest the acetoclastic pathway as most relevant, linking prokaryotic structure to function remains one of the most significant research challenges. Nevertheless, the evidence provided by this study suggests a positive relationship between temperature and the stimulating effects of antibiotics on CH4 production. Temperature increases the potential harmful effects of antibiotics on the concentration of greenhouse gases through increased methanogenesis, according to anaerobic incubation experiments with freshwater sediments.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01828-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01828-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH4) emissions from natural systems are rising in a concerning manner with an incomplete understanding of its drivers. Recently, chemical stressors such as antibiotics have been suggested as a thus far overlooked factor increasing methanogenesis in freshwaters. Since usage and toxicological impact of antibiotics could increase in a warming climate, we assessed the temperature-dependence of antibiotic effects on methanogenesis. In this light, we conducted anaerobic incubations with freshwater sediment at 10, 15, and 20 °C in presence of a mixture of five antibiotics at field-relevant concentrations. Weekly measurements of CH4 showed a strong temperature dependence of antibiotic effects by changing effect sizes, directions and dynamics. While antibiotics reduced CH4 production at 10 °C, methanogenesis was elevated at 15 °C with the most pronounced increase occurring at 20 °C. Furthermore, antibiotics changed the prokaryotic assemblage at all temperatures and effect patterns of CH4 producing Methanomicrobia strongly followed the patterns observed for methanogenesis. While analyses of compound-specific stable isotopes and the metatranscriptome suggest the acetoclastic pathway as most relevant, linking prokaryotic structure to function remains one of the most significant research challenges. Nevertheless, the evidence provided by this study suggests a positive relationship between temperature and the stimulating effects of antibiotics on CH4 production. Temperature increases the potential harmful effects of antibiotics on the concentration of greenhouse gases through increased methanogenesis, according to anaerobic incubation experiments with freshwater sediments.

Abstract Image

温度升高会加剧抗生素对淡水沉积物甲烷生成的影响
自然系统的甲烷(CH4)排放量正在以令人担忧的方式上升,但人们对其驱动因素的了解却并不全面。最近,抗生素等化学胁迫因素被认为是迄今为止被忽视的增加淡水甲烷生成的一个因素。由于在气候变暖的情况下,抗生素的使用和毒性影响可能会增加,因此我们评估了抗生素对甲烷生成影响的温度依赖性。有鉴于此,我们在 10、15 和 20 °C的温度下,以现场相关浓度的五种抗生素混合物为条件,对淡水沉积物进行厌氧培养。每周对 CH4 的测量结果表明,抗生素的效应大小、方向和动态变化与温度密切相关。在 10 °C时,抗生素减少了CH4的产生,而在15 °C时,甲烷生成量增加,20 °C时甲烷生成量的增加最为明显。此外,抗生素改变了所有温度下的原核生物组合,产生甲烷的甲烷微生物的影响模式与甲烷生成的影响模式基本一致。虽然化合物特异性稳定同位素和元转录组的分析表明乙酰脆化途径最为相关,但将原核生物的结构与功能联系起来仍是最重大的研究挑战之一。不过,本研究提供的证据表明,温度与抗生素对甲烷产生的刺激作用之间存在正相关关系。根据淡水沉积物厌氧培养实验,温度会通过增加甲烷生成增加抗生素对温室气体浓度的潜在有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信