Crossing numbers of cable knots

IF 0.8 3区 数学 Q2 MATHEMATICS
Efstratia Kalfagianni, Rob Mcconkey
{"title":"Crossing numbers of cable knots","authors":"Efstratia Kalfagianni,&nbsp;Rob Mcconkey","doi":"10.1112/blms.13140","DOIUrl":null,"url":null,"abstract":"<p>We use the degree of the colored Jones knot polynomials to show that the crossing number of a <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,q)$</annotation>\n </semantics></math>-cable of an adequate knot with crossing number <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> is larger than <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mspace></mspace>\n <mi>c</mi>\n </mrow>\n <annotation>$q^2\\, c$</annotation>\n </semantics></math>. As an application, we determine the crossing number of 2-cables of adequate knots. We also determine the crossing number of the connected sum of any adequate knot with a 2-cable of an adequate knot.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3400-3411"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13140","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13140","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use the degree of the colored Jones knot polynomials to show that the crossing number of a ( p , q ) $(p,q)$ -cable of an adequate knot with crossing number c $c$ is larger than q 2 c $q^2\, c$ . As an application, we determine the crossing number of 2-cables of adequate knots. We also determine the crossing number of the connected sum of any adequate knot with a 2-cable of an adequate knot.

Abstract Image

电缆结的交叉数量
我们利用彩色琼斯结多项式的度数来证明,具有交叉数 c $c$ 的适当结的 ( p , q ) $(p,q)$ 电缆的交叉数大于 q 2 c $q^2\, c$ 。作为应用,我们确定了适当结的 2 个缆线的交叉数。我们还确定了任何适当结与适当结的 2-cable 的连接和的交叉数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信