{"title":"Auslander-type conditions and weakly Gorenstein algebras","authors":"Zhaoyong Huang","doi":"10.1112/blms.13138","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be an Artin algebra. Under certain Auslander-type conditions, we give some equivalent characterizations of (weakly) Gorenstein algebras in terms of the properties of Gorenstein projective modules and modules satisfying Auslander-type conditions. As applications, we provide some support for several homological conjectures. In particular, we prove that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is left quasi-Auslander, then <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if and only if it is (left and) right weakly Gorenstein; and that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Auslander condition, then <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of an Auslander–Reiten's conjecture, which states that <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Auslander condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3382-3399"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an Artin algebra. Under certain Auslander-type conditions, we give some equivalent characterizations of (weakly) Gorenstein algebras in terms of the properties of Gorenstein projective modules and modules satisfying Auslander-type conditions. As applications, we provide some support for several homological conjectures. In particular, we prove that if is left quasi-Auslander, then is Gorenstein if and only if it is (left and) right weakly Gorenstein; and that if satisfies the Auslander condition, then is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of an Auslander–Reiten's conjecture, which states that is Gorenstein if satisfies the Auslander condition.
让 R $R$ 是一个阿廷代数。在某些奥斯兰德型条件下,我们根据满足奥斯兰德型条件的戈伦斯坦射影模块和模块的性质,给出了(弱)戈伦斯坦代数的一些等价特征。作为应用,我们为几个同调猜想提供了一些支持。特别是,我们证明了如果 R $R$ 是左准奥斯兰德,那么当且仅当 R $R$ 是(左和)右弱戈伦斯坦时,它就是戈伦斯坦;如果 R $R$ 满足奥斯兰德条件,那么当且仅当 R $R$ 是左或右弱戈伦斯坦时,它就是戈伦斯坦。这是 Auslander-Reiten 猜想的简化,即如果 R $R$ 满足 Auslander 条件,则 R $R$ 是 Gorenstein。