Continuity of extensions of Lipschitz maps and of monotone maps

IF 1 2区 数学 Q1 MATHEMATICS
Krzysztof J. Ciosmak
{"title":"Continuity of extensions of Lipschitz maps and of monotone maps","authors":"Krzysztof J. Ciosmak","doi":"10.1112/jlms.70014","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a subset of a Hilbert space. We prove that if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n </mrow>\n <annotation>$v\\colon X\\rightarrow \\mathbb {R}^m$</annotation>\n </semantics></math> is such that\n\n </p><p>Moreover, if either <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$m\\in \\lbrace 1,2,3\\rbrace$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is convex, we prove the converse: We show that a map <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n </mrow>\n <annotation>$v\\colon X\\rightarrow \\mathbb {R}^m$</annotation>\n </semantics></math> that allows for a 1-Lipschitz, uniform distance preserving extension of any 1-Lipschitz map on a subset of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> also satisfies the above set of inequalities. We also prove a similar continuity result concerning extensions of monotone maps. Our results hold true also for maps taking values in infinite-dimensional spaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a subset of a Hilbert space. We prove that if v : X R m $v\colon X\rightarrow \mathbb {R}^m$ is such that

Moreover, if either m { 1 , 2 , 3 } $m\in \lbrace 1,2,3\rbrace$ or X $X$ is convex, we prove the converse: We show that a map v : X R m $v\colon X\rightarrow \mathbb {R}^m$ that allows for a 1-Lipschitz, uniform distance preserving extension of any 1-Lipschitz map on a subset of X $X$ also satisfies the above set of inequalities. We also prove a similar continuity result concerning extensions of monotone maps. Our results hold true also for maps taking values in infinite-dimensional spaces.

Abstract Image

Lipschitz 地图和单调地图扩展的连续性
让 X $X$ 是一个希尔伯特空间的子集。我们证明,如果 v : X → R m $v\colon X\rightarrow \mathbb {R}^m$ 是这样的,而且,如果 m ∈ { 1 , 2 , 3 } 或者 X $X$ 是凸的,我们证明反过来:如果 v : X → R m $v\colon X\rightarrow \mathbb {R}^m$ 是这样的。 或 X $X$ 是凸的,我们证明反过来:我们证明了一个映射 v : X → R m $v\colon X\rightarrow \mathbb {R}^m$ 可以在 X $X$ 的子集上对任何 1-Lipschitz 映射进行 1-Lipschitz、均匀距离保持的扩展,这个映射也满足上述不等式集。我们还证明了关于单调映射扩展的类似连续性结果。我们的结果也适用于在无限维空间取值的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信