Abundance: Asymmetric graph removal lemmas and integer solutions to linear equations

IF 1 2区 数学 Q1 MATHEMATICS
António Girão, Eoin Hurley, Freddie Illingworth, Lukas Michel
{"title":"Abundance: Asymmetric graph removal lemmas and integer solutions to linear equations","authors":"António Girão,&nbsp;Eoin Hurley,&nbsp;Freddie Illingworth,&nbsp;Lukas Michel","doi":"10.1112/jlms.70015","DOIUrl":null,"url":null,"abstract":"<p>We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer to a question of Gishboliner, Shapira and Wigderson by showing that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$t \\geqslant 4$</annotation>\n </semantics></math>, there are <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>t</mi>\n </msub>\n <annotation>$K_t$</annotation>\n </semantics></math>-abundant graphs of chromatic number <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>. Using similar methods, we also extend work of Ruzsa by proving that a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊂</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {A}\\subset \\lbrace 1,\\dots,N \\rbrace$</annotation>\n </semantics></math> which avoids solutions with distinct integers to an equation of genus at least two has size <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msqrt>\n <mi>N</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O}(\\sqrt {N})$</annotation>\n </semantics></math>. The best previous bound was <span></span><math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$N^{1 - o(1)}$</annotation>\n </semantics></math> and the exponent of <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$1/2$</annotation>\n </semantics></math> is best possible in such a result. Finally, we investigate the relationship between polynomial dependencies in asymmetric removal lemmas and the problem of avoiding integer solutions to equations. The results suggest a potentially deep correspondence. Many open questions remain.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer to a question of Gishboliner, Shapira and Wigderson by showing that for every t 4 $t \geqslant 4$ , there are K t $K_t$ -abundant graphs of chromatic number t $t$ . Using similar methods, we also extend work of Ruzsa by proving that a set A { 1 , , N } $\mathcal {A}\subset \lbrace 1,\dots,N \rbrace$ which avoids solutions with distinct integers to an equation of genus at least two has size O ( N ) $\mathcal {O}(\sqrt {N})$ . The best previous bound was N 1 o ( 1 ) $N^{1 - o(1)}$ and the exponent of 1 / 2 $1/2$ is best possible in such a result. Finally, we investigate the relationship between polynomial dependencies in asymmetric removal lemmas and the problem of avoiding integer solutions to equations. The results suggest a potentially deep correspondence. Many open questions remain.

Abstract Image

丰富:非对称图形删除定理和线性方程的整数解
我们证明了一大类成对图形满足非对称图形移除定理的多项式依赖性。特别是,我们证明了对于每 t ⩾ 4 $t \geqslant 4$,存在色度数 t $t$ 的 K t $K_t$ -冗余图,从而给出了 Gishboliner、Shapira 和 Wigderson 所提问题的意想不到的答案。使用类似的方法,我们还扩展了鲁兹萨的工作,证明了一个集合 A ⊂ { 1 , ⋯ , N }。 $\mathcal {A}\subset \lbrace 1,\dots,N\rbrace$,它避免了对一个至少有两个属的方程求不同整数的解,其大小为 O ( N ) $\mathcal {O}(\sqrt {N})$ 。之前最好的界限是 N 1 - o ( 1 ) $N^{1-o(1)}$,而 1 / 2 $1/2$ 的指数在这样的结果中是最好的。最后,我们研究了非对称删除定理中的多项式依赖性与避免方程整数解问题之间的关系。结果表明两者之间可能存在深刻的对应关系。但仍有许多问题有待解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信