A factorization of the GJMS operators of special Einstein products and applications

IF 1 2区 数学 Q1 MATHEMATICS
Jeffrey S. Case, Andrea Malchiodi
{"title":"A factorization of the GJMS operators of special Einstein products and applications","authors":"Jeffrey S. Case,&nbsp;Andrea Malchiodi","doi":"10.1112/jlms.70023","DOIUrl":null,"url":null,"abstract":"<p>We show that the GJMS operators of a special Einstein product factor as a composition of second- and fourth-order differential operators. In particular, our formula applies to the Riemannian product <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>ℓ</mi>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mi>ℓ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$H^{\\ell } \\times S^{d-\\ell }$</annotation>\n </semantics></math>. We also show that there is an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$D = D(k,\\ell)$</annotation>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$d \\geqslant D$</annotation>\n </semantics></math>, then for any special Einstein product <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mi>ℓ</mi>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mi>ℓ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$N^\\ell \\times M^{d-\\ell }$</annotation>\n </semantics></math>, the Green's function for the GJMS operator of order <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$2k$</annotation>\n </semantics></math> is positive. As a result, these products give new examples of closed Riemannian manifolds for which the <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n </msub>\n <annotation>$Q_{2k}$</annotation>\n </semantics></math>-Yamabe problem is solvable.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70023","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the GJMS operators of a special Einstein product factor as a composition of second- and fourth-order differential operators. In particular, our formula applies to the Riemannian product H × S d $H^{\ell } \times S^{d-\ell }$ . We also show that there is an integer D = D ( k , ) $D = D(k,\ell)$ such that if d D $d \geqslant D$ , then for any special Einstein product N × M d $N^\ell \times M^{d-\ell }$ , the Green's function for the GJMS operator of order 2 k $2k$ is positive. As a result, these products give new examples of closed Riemannian manifolds for which the Q 2 k $Q_{2k}$ -Yamabe problem is solvable.

特殊爱因斯坦积的 GJMS 算子因式分解及其应用
我们证明,特殊爱因斯坦积的 GJMS 算子因子是二阶和四阶微分算子的组合。特别是,我们的公式适用于黎曼积 H ℓ × S d - ℓ $H^{\ell }。\times S^{d-\ell }$ 。我们还证明,存在一个整数 D = D ( k , ℓ ) $D = D(k,\ell)$ ,如果 d ⩾ D $d \geqslant D$,那么对于任何特殊的爱因斯坦积 N ℓ × M d - ℓ $N^\ell \times M^{d-\ell }$,阶数为 2 k $2k$ 的 GJMS 算子的格林函数为正。因此,这些乘积给出了Q 2 k $Q_{2k}$ -Yamabe问题可解的封闭黎曼流形的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信