{"title":"Arithmetic progressions and holomorphic phase retrieval","authors":"Lukas Liehr","doi":"10.1112/blms.13134","DOIUrl":null,"url":null,"abstract":"<p>We study the determination of a holomorphic function from its absolute value. Given a parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\theta \\in \\mathbb {R}$</annotation>\n </semantics></math>, we derive the following characterization of uniqueness in terms of rigidity of a set <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊆</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\Lambda \\subseteq \\mathbb {R}$</annotation>\n </semantics></math>: if <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is a vector space of entire functions containing all exponentials <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>ξ</mi>\n <mi>z</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <mi>ξ</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$e^{\\xi z}, \\, \\xi \\in \\mathbb {C} \\setminus \\lbrace 0 \\rbrace$</annotation>\n </semantics></math>, then every <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>∈</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$F \\in \\mathcal {F}$</annotation>\n </semantics></math> is uniquely determined up to a unimodular phase factor by <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>|</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>:</mo>\n <mi>z</mi>\n <mo>∈</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>i</mi>\n <mi>θ</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>+</mo>\n <mi>i</mi>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace |F(z)|: z \\in e^{i\\theta }({\\mathbb {R}}+ i \\Lambda) \\rbrace$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is not contained in an arithmetic progression <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>Z</mi>\n <mo>+</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a\\mathbb {Z}+b$</annotation>\n </semantics></math>. Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>×</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>${\\mathbb {Z}}\\times \\tilde{{\\mathbb {Z}}}$</annotation>\n </semantics></math> is a uniqueness set for the Gabor phase retrieval problem in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mo>+</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2({\\mathbb {R}}_+)$</annotation>\n </semantics></math>, provided that <span></span><math>\n <semantics>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{{\\mathbb {Z}}}$</annotation>\n </semantics></math> is a suitable perturbation of the integers.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3316-3330"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the determination of a holomorphic function from its absolute value. Given a parameter , we derive the following characterization of uniqueness in terms of rigidity of a set : if is a vector space of entire functions containing all exponentials , then every is uniquely determined up to a unimodular phase factor by if and only if is not contained in an arithmetic progression . Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, is a uniqueness set for the Gabor phase retrieval problem in , provided that is a suitable perturbation of the integers.
我们研究从全形函数的绝对值确定全形函数的问题。给定一个参数θ ∈ R $\theta \ in \mathbb {R}$ ,我们从集合Λ ⊆ R $\Lambda \subseteq \mathbb {R}$ 的刚度方面推导出以下唯一性特征:如果 F $\mathcal {F}$ 是包含所有指数 e ξ z , ξ ∈ C ∖ { 0 } 的全函数向量空间 $e^{xi z}, \, \xi \in \mathbb {C}\setminus \lbrace 0 \rbrace$, then every F ∈ F $F \in \mathcal {F}$ is uniquely determined up to a unimodular phase factor by { | F ( z ) | : z ∈ e i θ ( R + i Λ ) } $\lbrace |F(z)|: z ∈ e^{i\theta }({\mathbb {R}}+ i \Lambda) \rbrace$ 当且仅当 Λ $\Lambda$ 不包含在算术级数 a Z + b $a\mathbb {Z}+b$ 中时。利用这一洞察力,我们为 Gabor 相位检索和保利型唯一性问题确定了一系列结果。例如,对于 L 2 ( R + ) $L^2({\mathbb {R}}_+)$ 中的 Gabor 相位检索问题,只要 Z ∼ $\tilde{\mathbb {Z}}$ 是一个合适的整数扰动,那么 Z × Z ∼ ${\mathbb {Z}}/times \tilde{\mathbb {Z}}$ 就是一个唯一性集合。