On the maximum field of linearity of linear sets

IF 0.8 3区 数学 Q2 MATHEMATICS
Bence Csajbók, Giuseppe Marino, Valentina Pepe
{"title":"On the maximum field of linearity of linear sets","authors":"Bence Csajbók,&nbsp;Giuseppe Marino,&nbsp;Valentina Pepe","doi":"10.1112/blms.13133","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> denote an <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-vector space. For an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math>-subspace <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>, assume that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>q</mi>\n </msub>\n <mfenced>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>v</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n </msub>\n <mo>∩</mo>\n <mi>U</mi>\n </mfenced>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\dim _q \\left(\\langle {\\bf v}\\rangle _{\\mathbb {F}_{q^n}} \\cap U\\right) \\geqslant 2$</annotation>\n </semantics></math> for each nonzero vector <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>∈</mo>\n <mi>U</mi>\n </mrow>\n <annotation>${\\bf v}\\in U$</annotation>\n </semantics></math>. If <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$n\\leqslant q$</annotation>\n </semantics></math>, then we prove the existence of an integer <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>&lt;</mo>\n <mi>d</mi>\n <mo>∣</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1&amp;lt;d \\mid n$</annotation>\n </semantics></math> such that the set of one-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-subspaces generated by nonzero vectors of <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> is the same as the set of one-dimensional <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n </msub>\n <annotation>$\\mathbb {F}_{q^n}$</annotation>\n </semantics></math>-subspaces generated by nonzero vectors of <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>U</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>d</mi>\n </msup>\n </msub>\n </msub>\n <annotation>$\\langle U\\rangle _{\\mathbb {F}_{q^d}}$</annotation>\n </semantics></math>. If we view <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> as a point set of <span></span><math>\n <semantics>\n <mrow>\n <mi>AG</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>r</mi>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{AG}}\\,(r,q^n)$</annotation>\n </semantics></math>, it means that <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>⟨</mo>\n <mi>U</mi>\n <mo>⟩</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <msup>\n <mi>q</mi>\n <mi>d</mi>\n </msup>\n </msub>\n </msub>\n <annotation>$\\langle U \\rangle _{\\mathbb {F}_{q^d}}$</annotation>\n </semantics></math> determine the same set of directions. We prove a stronger statement when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∣</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$n \\mid m$</annotation>\n </semantics></math>. In terms of linear sets, it means that an <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math>-linear set of <span></span><math>\n <semantics>\n <mrow>\n <mi>PG</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{PG}\\,(r-1,q^n)$</annotation>\n </semantics></math> has maximum field of linearity <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math> only if it has a point of weight one. We also present some consequences regarding the size of a linear set.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3300-3315"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let V $V$ denote an r $r$ -dimensional F q n $\mathbb {F}_{q^n}$ -vector space. For an m $m$ -dimensional F q $\mathbb {F}_q$ -subspace U $U$ of V $V$ , assume that dim q v F q n U 2 $\dim _q \left(\langle {\bf v}\rangle _{\mathbb {F}_{q^n}} \cap U\right) \geqslant 2$ for each nonzero vector v U ${\bf v}\in U$ . If n q $n\leqslant q$ , then we prove the existence of an integer 1 < d n $1&lt;d \mid n$ such that the set of one-dimensional F q n $\mathbb {F}_{q^n}$ -subspaces generated by nonzero vectors of U $U$ is the same as the set of one-dimensional F q n $\mathbb {F}_{q^n}$ -subspaces generated by nonzero vectors of U F q d $\langle U\rangle _{\mathbb {F}_{q^d}}$ . If we view U $U$ as a point set of AG ( r , q n ) ${\mathrm{AG}}\,(r,q^n)$ , it means that U $U$ and U F q d $\langle U \rangle _{\mathbb {F}_{q^d}}$ determine the same set of directions. We prove a stronger statement when n m $n \mid m$ . In terms of linear sets, it means that an F q $\mathbb {F}_q$ -linear set of PG ( r 1 , q n ) $\mathrm{PG}\,(r-1,q^n)$ has maximum field of linearity F q $\mathbb {F}_q$ only if it has a point of weight one. We also present some consequences regarding the size of a linear set.

Abstract Image

论线性集合的最大线性域
让 V $V$ 表示一个 r $r$ -dimensional F q n $\mathbb {F}_{q^n}$ -vector 空间。对于 V $V$ 的一个 m $m$ -dimensional F q $\mathbb {F}_q$ -subspace U $U$ , 假设对于每个非零向量 v ∈ U ${\bf v}\rangle _\mathbb {F}_{q^n}} \cap U\right) \geqslant 2$ 。如果 n ⩽ q $n\leqslant q$ ,那么我们证明存在一个整数 1 &lt; d ∣ n $1&amp;lt;d \mid n$,使得由 U $U$ 的非零向量生成的一维 F q n $\mathbb {F}_{q^n}$ 子空间的集合与由⟨ U ⟩ F q d $\langle U\rangle _{\mathbb {F}_{q^d}}$ 的非零向量生成的一维 F q n $\mathbb {F}_{q^n}$ 子空间的集合相同。如果我们把 U $U$ 看作 AG ( r , q n ) ${\mathrm{AG}}\,(r,q^n)$ 的点集,这意味着 U $U$ 和 ⟨ U ⟩ F q d $langle U \rangle _{\mathbb {F}_{q^d}}$ 决定了同一组方向。当 n ∣ m $n\mid m$ 时,我们会证明一个更有力的声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信