A note on the PDE approach to the L ∞ $L^\infty$ estimates for complex Hessian equations on transverse Kähler manifolds

IF 0.8 3区 数学 Q2 MATHEMATICS
P. Sivaram
{"title":"A note on the PDE approach to the \n \n \n L\n ∞\n \n $L^\\infty$\n estimates for complex Hessian equations on transverse Kähler manifolds","authors":"P. Sivaram","doi":"10.1112/blms.13150","DOIUrl":null,"url":null,"abstract":"<p>In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>-Gorenstein <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math>-varieties is obtained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3542-3564"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an L $L^\infty$ estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on Q $\mathbb {Q}$ -Gorenstein T $\mathbb {T}$ -varieties is obtained.

横向 Kähler 流形上复杂 Hessian 方程 L ∞ $L^\infty$ 估计的 PDE 方法说明
在这篇论文中,王国芳和王国芳-同方的偏微分方程(PDE)方法证明了在同源可定向横向凯勒流形上的横向复蒙哥-安培方程的 L ∞ $L\infty$ 估计值。作为应用,得到了 Q $\mathbb {Q}$ -Gorenstein T $\mathbb {T}$ - varieties 上 Calabi-Yau cone metrics 正则性的纯 PDE 证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信