Perfect powers in elliptic divisibility sequences

IF 0.8 3区 数学 Q2 MATHEMATICS
Maryam Nowroozi, Samir Siksek
{"title":"Perfect powers in elliptic divisibility sequences","authors":"Maryam Nowroozi,&nbsp;Samir Siksek","doi":"10.1112/blms.13135","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>/</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$E/\\mathbb {Q}$</annotation>\n </semantics></math> be an elliptic curve given by an integral Weierstrass equation. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P \\in E(\\mathbb {Q})$</annotation>\n </semantics></math> be a point of infinite order, and let <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$(B_n)_{n\\geqslant 1}$</annotation>\n </semantics></math> be the elliptic divisibility sequence generated by <span></span><math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math>. This paper is concerned with a question posed in 2007 by Everest, Reynolds and Stevens: does <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$(B_n)_{n \\geqslant 1}$</annotation>\n </semantics></math> contain only finitely many perfect powers? We answer this question positively under the following three additional assumptions: \n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3331-3345"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let E / Q $E/\mathbb {Q}$ be an elliptic curve given by an integral Weierstrass equation. Let P E ( Q ) $P \in E(\mathbb {Q})$ be a point of infinite order, and let ( B n ) n 1 $(B_n)_{n\geqslant 1}$ be the elliptic divisibility sequence generated by P $P$ . This paper is concerned with a question posed in 2007 by Everest, Reynolds and Stevens: does ( B n ) n 1 $(B_n)_{n \geqslant 1}$ contain only finitely many perfect powers? We answer this question positively under the following three additional assumptions:

椭圆可除序列中的完全幂
设 E / Q $E/\mathbb {Q}$ 是由韦尔斯特拉斯积分方程给出的椭圆曲线。让 P ∈ E ( Q ) $P \in E(\mathbb {Q})$ 是一个无穷阶点,让 ( B n ) n ⩾ 1 $(B_n)_{n\geqslant 1}$ 是由 P $P$ 产生的椭圆可分序列。本文关注 Everest, Reynolds 和 Stevens 于 2007 年提出的一个问题:( B n ) n ⩾ 1 $(B_n)_{n \geqslant 1}$ 是否只包含有限多个完全幂?在以下三个附加假设下,我们可以肯定地回答这个问题:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信