Cyclic-Schottky strata of Schottky space

IF 0.8 3区 数学 Q2 MATHEMATICS
Rubén A. Hidalgo, Milagros Izquierdo
{"title":"Cyclic-Schottky strata of Schottky space","authors":"Rubén A. Hidalgo,&nbsp;Milagros Izquierdo","doi":"10.1112/blms.13141","DOIUrl":null,"url":null,"abstract":"<p>Schottky space <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>g</mi>\n </msub>\n <annotation>${\\mathcal {S}}_{g}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g \\geqslant 2$</annotation>\n </semantics></math> is an integer, is a connected complex orbifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>(</mo>\n <mi>g</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$3(g-1)$</annotation>\n </semantics></math>; it provides a parametrization of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>PSL</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm PSL}_{2}({\\mathbb {C}})$</annotation>\n </semantics></math>-conjugacy classes of Schottky groups <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> of rank <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>. The branch locus <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n <mo>⊂</mo>\n <msub>\n <mi>S</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>${\\mathcal {B}}_{g} \\subset {\\mathcal {S}}_{g}$</annotation>\n </semantics></math>, consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mi>Γ</mi>\n <mo>]</mo>\n </mrow>\n <mo>∈</mo>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$[\\Gamma] \\in {\\mathcal {B}}_{g}$</annotation>\n </semantics></math>, then there is a Kleinian group <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> as a normal subgroup of index some prime integer <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p \\geqslant 2$</annotation>\n </semantics></math>. The structural description, in terms of Klein–Maskit Combination Theorems, of such a group <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is completely determined by a triple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(t,r,s)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t,r,s \\geqslant 0$</annotation>\n </semantics></math> are integers such that <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mi>p</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>+</mo>\n <mi>r</mi>\n <mo>+</mo>\n <mi>s</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>+</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>r</mi>\n </mrow>\n <annotation>$g=p(t+r+s-1)+1-r$</annotation>\n </semantics></math>. For each such tuple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(g,p;t,r,s)$</annotation>\n </semantics></math>, there is a corresponding cyclic-Schottky stratum <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <mo>⊂</mo>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$F(g,p;t,r,s) \\subset {\\mathcal {B}}_{g}$</annotation>\n </semantics></math>. It is known that <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$F(g,2;t,r,s)$</annotation>\n </semantics></math> is connected. In this paper, for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$p \\geqslant 3$</annotation>\n </semantics></math>, we study the connectivity of these <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$F(g,p;t,r,s)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3412-3427"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13141","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Schottky space S g ${\mathcal {S}}_{g}$ , where g 2 $g \geqslant 2$ is an integer, is a connected complex orbifold of dimension 3 ( g 1 ) $3(g-1)$ ; it provides a parametrization of the PSL 2 ( C ) ${\rm PSL}_{2}({\mathbb {C}})$ -conjugacy classes of Schottky groups Γ $\Gamma$ of rank g $g$ . The branch locus B g S g ${\mathcal {B}}_{g} \subset {\mathcal {S}}_{g}$ , consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If [ Γ ] B g $[\Gamma] \in {\mathcal {B}}_{g}$ , then there is a Kleinian group K $K$ containing Γ $\Gamma$ as a normal subgroup of index some prime integer p 2 $p \geqslant 2$ . The structural description, in terms of Klein–Maskit Combination Theorems, of such a group K $K$ is completely determined by a triple ( t , r , s ) $(t,r,s)$ , where t , r , s 0 $t,r,s \geqslant 0$ are integers such that g = p ( t + r + s 1 ) + 1 r $g=p(t+r+s-1)+1-r$ . For each such tuple ( g , p ; t , r , s ) $(g,p;t,r,s)$ , there is a corresponding cyclic-Schottky stratum F ( g , p ; t , r , s ) B g $F(g,p;t,r,s) \subset {\mathcal {B}}_{g}$ . It is known that F ( g , 2 ; t , r , s ) $F(g,2;t,r,s)$ is connected. In this paper, for p 3 $p \geqslant 3$ , we study the connectivity of these F ( g , p ; t , r , s ) $F(g,p;t,r,s)$ .

Abstract Image

肖特基空间的循环-肖特基层
已知 F ( g , 2 ; t , r , s ) $F(g,2;t,r,s)$ 是连通的。在本文中,对于 p ⩾ 3 $p \geqslant 3$,我们研究这些 F ( g , p ; t , r , s ) $F(g,p;t,r,s)$ 的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信