Optimizing Nitrate and Nitrite Recovery from Aquaculture Wastewater Using Coffee Ground Biosorbent: Adsorption Mechanisms and Its Potential as Soil Conditioner

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sin Ying Tan, Sumathi Sethupathi, Kah Hon Leong
{"title":"Optimizing Nitrate and Nitrite Recovery from Aquaculture Wastewater Using Coffee Ground Biosorbent: Adsorption Mechanisms and Its Potential as Soil Conditioner","authors":"Sin Ying Tan,&nbsp;Sumathi Sethupathi,&nbsp;Kah Hon Leong","doi":"10.1007/s11270-024-07597-1","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture wastewater (AW) is contaminated with nitrate (NO<sub>3</sub><sup>−</sup>) and nitrite (NO<sub>2</sub><sup>−</sup>), which can cause eutrophication if discharged without treatment. This study explores using coffee grounds biosorbent (CGB) to recover NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> ions from AW and reutilize the spent sorbent as a soil conditioner. The process study, adsorption isotherms and kinetics of the adsorption of NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> were deduced using several parameters and models. Spent sorbents were also compared with the commercial potting soil based on Okra plant growth metrics. The highest recovery efficiency for NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> was 98.6% and 95.0%, respectively, using 5 g/L of CGB with a 2-h contact time at pH 11. Adsorption followed the Freundlich isotherm and pseudo-first-order model, indicating multilayer adsorption on a heterogeneous surface. Optimal Okra growth was observed with 10% spent CGB (SCGB). This study highlights the potential of waste biosorbents for nutrient recovery and subsequent use as soil conditioners.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07597-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aquaculture wastewater (AW) is contaminated with nitrate (NO3) and nitrite (NO2), which can cause eutrophication if discharged without treatment. This study explores using coffee grounds biosorbent (CGB) to recover NO3 and NO2 ions from AW and reutilize the spent sorbent as a soil conditioner. The process study, adsorption isotherms and kinetics of the adsorption of NO3 and NO2 were deduced using several parameters and models. Spent sorbents were also compared with the commercial potting soil based on Okra plant growth metrics. The highest recovery efficiency for NO3 and NO2 was 98.6% and 95.0%, respectively, using 5 g/L of CGB with a 2-h contact time at pH 11. Adsorption followed the Freundlich isotherm and pseudo-first-order model, indicating multilayer adsorption on a heterogeneous surface. Optimal Okra growth was observed with 10% spent CGB (SCGB). This study highlights the potential of waste biosorbents for nutrient recovery and subsequent use as soil conditioners.

Graphical Abstract

Abstract Image

利用咖啡粉生物吸附剂优化水产养殖废水中硝酸盐和亚硝酸盐的回收:吸附机制及其作为土壤改良剂的潜力
水产养殖废水(AW)受到硝酸盐(NO3-)和亚硝酸盐(NO2-)的污染,如果不经处理排放,会导致富营养化。本研究探讨了利用咖啡渣生物吸附剂(CGB)回收 AW 中的 NO3- 和 NO2- 离子,并将废吸附剂作为土壤改良剂重新利用。研究利用多个参数和模型对 NO3- 和 NO2- 的吸附过程、吸附等温线和吸附动力学进行了推导。根据秋葵植物的生长指标,还将废吸附剂与商用盆栽土壤进行了比较。在 pH 值为 11、接触时间为 2 小时的情况下,使用 5 克/升的 CGB,NO3- 和 NO2- 的最高回收率分别为 98.6% 和 95.0%。吸附遵循 Freundlich 等温线和伪一阶模型,表明在异质表面上存在多层吸附。在使用 10% 的废 CGB(SCGB)时,秋葵的生长达到最佳状态。这项研究凸显了废物生物吸附剂在养分回收和随后用作土壤改良剂方面的潜力。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信