An-ru Yan , Xiao-bo Wang , Ling Zhu , Xue-sheng Liu , Zhi-yong Wang
{"title":"Oxygen vacancy strategy enhancing the performance of TiO2/CNT supported ultrafine Pt catalyst for the oxygen reduction reaction","authors":"An-ru Yan , Xiao-bo Wang , Ling Zhu , Xue-sheng Liu , Zhi-yong Wang","doi":"10.1016/j.jelechem.2024.118734","DOIUrl":null,"url":null,"abstract":"<div><div>Economic viability and durability are pivotal challenges limiting the commercial application of proton exchange membrane fuel cells (PEMFC). The development of low Pt usage oxygen reduction reaction catalysts with high catalytic activity and durability is imperative. Carbon support corrosion, as well as Pt particles agglomeration and exfoliation are primary causes of commercial Pt/C catalyst degradation. Here, a composite materials formed by TiO<sub>2</sub> containing oxygen vacancy (O<sub>V</sub>) and carbon nanotube (CNT) was used as a functional support to successfully load Pt nanoparticles (NPs). The oxygen vacancy facilitated interactions between TiO<sub>2</sub>(O<sub>V</sub>) and Pt, enhancing the anchoring of Pt NPs and suppressing particle growth. The Pt/TiO<sub>2</sub>(O<sub>V</sub>)-CNT demonstrates excellent performance with mass activity of 788 mA/mg<sub>Pt</sub> @0.85 V, the half-wave potential increased 34 mV and the tafel slope decreased by 11.89 mVdec<sup>−1</sup> compared to commercial Pt/C. The durability of Pt/TiO<sub>2</sub>(O<sub>V</sub>)-CNT nearly 3-fold that of commercial Pt/C with negligible decay of half-wave potential (0.9 %) and mass activity (16 %). Density functional theory calculations and X-ray photoelectron spectroscopy indicated that the charge transfer from TiO<sub>2</sub>(O<sub>V</sub>) to Pt facilitates the formation of strong metal-support interactions (SMSI), leading to a downward shift in the d-band center of Pt and a reduction in the binding strength to *OOH, thus lowering the activation energy of the rate-determining step which in turn promoting the activity of ORR. This study provides a reliable approach for designing catalysts with high activity and durability.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118734"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007124","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Economic viability and durability are pivotal challenges limiting the commercial application of proton exchange membrane fuel cells (PEMFC). The development of low Pt usage oxygen reduction reaction catalysts with high catalytic activity and durability is imperative. Carbon support corrosion, as well as Pt particles agglomeration and exfoliation are primary causes of commercial Pt/C catalyst degradation. Here, a composite materials formed by TiO2 containing oxygen vacancy (OV) and carbon nanotube (CNT) was used as a functional support to successfully load Pt nanoparticles (NPs). The oxygen vacancy facilitated interactions between TiO2(OV) and Pt, enhancing the anchoring of Pt NPs and suppressing particle growth. The Pt/TiO2(OV)-CNT demonstrates excellent performance with mass activity of 788 mA/mgPt @0.85 V, the half-wave potential increased 34 mV and the tafel slope decreased by 11.89 mVdec−1 compared to commercial Pt/C. The durability of Pt/TiO2(OV)-CNT nearly 3-fold that of commercial Pt/C with negligible decay of half-wave potential (0.9 %) and mass activity (16 %). Density functional theory calculations and X-ray photoelectron spectroscopy indicated that the charge transfer from TiO2(OV) to Pt facilitates the formation of strong metal-support interactions (SMSI), leading to a downward shift in the d-band center of Pt and a reduction in the binding strength to *OOH, thus lowering the activation energy of the rate-determining step which in turn promoting the activity of ORR. This study provides a reliable approach for designing catalysts with high activity and durability.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.