{"title":"A general modeling framework for FO spiral-wound membrane and its fouling impact on FO-RO desalination system","authors":"Y.K. Goi, Y.Y. Liang","doi":"10.1016/j.desal.2024.118236","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling fouling in forward osmosis (FO) spiral-wound membrane (SWM) is challenging due to the time-dependent nature of fouling and the complex flow patterns induced by baffle. This necessitates the development of a general modeling framework for FO SWM module that prioritizes both accuracy and ease of implementation. This framework was validated against FO SWM experiment data from previous work, demonstrating a reasonable agreement with a maximum error of 13.1 % in FO permeate flux. This validated model was used to study the impact of fouling on feed recovery, a critical factor influencing specific energy consumption (SEC) in FO-RO desalination systems. While improved operating conditions and membrane parameters (<em>A</em>, <em>S</em><sub><em>s</em></sub> and <em>C</em><sub><em>f</em></sub>) initially lead to increased water flux, this effect was significantly counteracted by accelerated fouling. Consequently, performance improvements in terms of flux and SEC remained minimal (<1 %) under severe fouling conditions. The results show that for foulant cake with larger pore diameter (>10 nm), the contribution of hydraulic resistance is insignificant compared to osmotic resistance. However, the contribution of hydraulic resistance becomes important for foulant cakes with pore diameter smaller than 10 nm. This paper shows that modeling have evolved to a stage that they can be used to understand membrane fouling phenomena at the SWM module scale.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118236"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009470","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling fouling in forward osmosis (FO) spiral-wound membrane (SWM) is challenging due to the time-dependent nature of fouling and the complex flow patterns induced by baffle. This necessitates the development of a general modeling framework for FO SWM module that prioritizes both accuracy and ease of implementation. This framework was validated against FO SWM experiment data from previous work, demonstrating a reasonable agreement with a maximum error of 13.1 % in FO permeate flux. This validated model was used to study the impact of fouling on feed recovery, a critical factor influencing specific energy consumption (SEC) in FO-RO desalination systems. While improved operating conditions and membrane parameters (A, Ss and Cf) initially lead to increased water flux, this effect was significantly counteracted by accelerated fouling. Consequently, performance improvements in terms of flux and SEC remained minimal (<1 %) under severe fouling conditions. The results show that for foulant cake with larger pore diameter (>10 nm), the contribution of hydraulic resistance is insignificant compared to osmotic resistance. However, the contribution of hydraulic resistance becomes important for foulant cakes with pore diameter smaller than 10 nm. This paper shows that modeling have evolved to a stage that they can be used to understand membrane fouling phenomena at the SWM module scale.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.