Minimizing the penalized goal-reaching probability with multiple dependent risks

Pub Date : 2024-10-24 DOI:10.1016/j.spl.2024.110287
Ying Huang, Jun Peng
{"title":"Minimizing the penalized goal-reaching probability with multiple dependent risks","authors":"Ying Huang,&nbsp;Jun Peng","doi":"10.1016/j.spl.2024.110287","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who wishes to minimize the probability that the value of the wealth process reaches a low barrier before a high goal. We assume that the insurer can purchase per-loss reinsurance for every class of insurance business and invest its surplus in a risk-free asset and a risky asset. Using the technique of stochastic control theory and solving the associated Hamilton-Jacobi-Bellman (HJB) equation, we derive the robust optimal investment-reinsurance strategy and the associated value function. We conclude that the robust optimal investment-reinsurance strategy coincides with the one without model ambiguity, but the value function differs. We also illustrate our results by numerical examples.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who wishes to minimize the probability that the value of the wealth process reaches a low barrier before a high goal. We assume that the insurer can purchase per-loss reinsurance for every class of insurance business and invest its surplus in a risk-free asset and a risky asset. Using the technique of stochastic control theory and solving the associated Hamilton-Jacobi-Bellman (HJB) equation, we derive the robust optimal investment-reinsurance strategy and the associated value function. We conclude that the robust optimal investment-reinsurance strategy coincides with the one without model ambiguity, but the value function differs. We also illustrate our results by numerical examples.
分享
查看原文
最小化多重依赖风险下的惩罚性目标达成概率
我们考虑的是模糊厌恶型保险公司(AAI)的稳健最优投资和再保险问题,该保险公司希望最大限度地降低财富过程的价值在达到高目标之前达到低障碍的概率。我们假设保险公司可以为每一类保险业务购买按损失再保险,并将盈余投资于无风险资产和风险资产。利用随机控制理论的技术并求解相关的汉密尔顿-雅各比-贝尔曼(HJB)方程,我们得出了稳健的最优投资-再保险策略和相关的价值函数。我们的结论是,稳健的最优投资-再保险策略与没有模型模糊性的策略相吻合,但价值函数不同。我们还通过数字示例来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信