Full active counter-roller spinning for thin-walled cylinders: Macroscopic deformation mechanism, mesoscopic texture evolution, and forming performance strengthening
Ning Yang , Zhishun Li , Lijun Zhang , Lukuan Li , Su Liu , Xianfeng Chen , Hang Wang , Shen Fan , Shuqin Fan , Jiayi Xu
{"title":"Full active counter-roller spinning for thin-walled cylinders: Macroscopic deformation mechanism, mesoscopic texture evolution, and forming performance strengthening","authors":"Ning Yang , Zhishun Li , Lijun Zhang , Lukuan Li , Su Liu , Xianfeng Chen , Hang Wang , Shen Fan , Shuqin Fan , Jiayi Xu","doi":"10.1016/j.tws.2024.112634","DOIUrl":null,"url":null,"abstract":"<div><div>The reliability and lightweight of hydrogen high-pressure storage present pressing global challenges. The forming mechanism of a novel full active counter-roller spinning (FACRS) process for thin-walled cylinders is studied from the perspective of macro‑meso coupling. This innovative process holds promise as a replacement for conventional mandrel spinning, enabling enhanced integration of form and property in manufacturing hydrogen bottle liners. Employing optimal Latin hypercube sampling, a response surface model is constructed for forming consistency (<em>λ</em>) of inner and outer surfaces, yielding an optimal set of process parameters under the Hooke-Jeeves algorithm. The resulting spun parts exhibit a more balanced and superior performance. A macro‑meso gradual cross-scale coupling simulation methodology is proposed, revealing that the process is characterized by the initial aggregation and subsequent reinforcement of texture, culminating in the formation of a \"soft\" rotated cubic texture, which still faces impediments or diminishes the orientation of texture. It is demonstrated that the evolution of texture is the result of the interactive coordination of various slip systems. Furthermore, the FACRS experiments and performance tests indicate that while enhancing the axial and circumferential mechanical properties of the spun parts, it also reduces material anisotropy. The grain refinement effect of the process has also led to a more uniform distribution of dimples on the fracture surface. The surface performance of the final spun parts improves by 60.11 %. These enhancements can be attributed to the combined effects of improved forming consistency, coordinated action of slip systems, and grain refinement. These results deepen the understanding of the macro‑meso deformation mechanisms underlying the novel process, providing valuable insights for further advancements in counter-roller spinning technology.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112634"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010747","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability and lightweight of hydrogen high-pressure storage present pressing global challenges. The forming mechanism of a novel full active counter-roller spinning (FACRS) process for thin-walled cylinders is studied from the perspective of macro‑meso coupling. This innovative process holds promise as a replacement for conventional mandrel spinning, enabling enhanced integration of form and property in manufacturing hydrogen bottle liners. Employing optimal Latin hypercube sampling, a response surface model is constructed for forming consistency (λ) of inner and outer surfaces, yielding an optimal set of process parameters under the Hooke-Jeeves algorithm. The resulting spun parts exhibit a more balanced and superior performance. A macro‑meso gradual cross-scale coupling simulation methodology is proposed, revealing that the process is characterized by the initial aggregation and subsequent reinforcement of texture, culminating in the formation of a "soft" rotated cubic texture, which still faces impediments or diminishes the orientation of texture. It is demonstrated that the evolution of texture is the result of the interactive coordination of various slip systems. Furthermore, the FACRS experiments and performance tests indicate that while enhancing the axial and circumferential mechanical properties of the spun parts, it also reduces material anisotropy. The grain refinement effect of the process has also led to a more uniform distribution of dimples on the fracture surface. The surface performance of the final spun parts improves by 60.11 %. These enhancements can be attributed to the combined effects of improved forming consistency, coordinated action of slip systems, and grain refinement. These results deepen the understanding of the macro‑meso deformation mechanisms underlying the novel process, providing valuable insights for further advancements in counter-roller spinning technology.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.