Data-driven inverse design of MoNbTiVWZr refractory multicomponent alloys: Microstructure and mechanical properties

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lavanya Raman , Arindam Debnath , Erik Furton , Shuang Lin , Adam Krajewski , Subrata Ghosh , Na Liu , Marcia Ahn , Bed Poudel , Shunli Shang , Shashank Priya , Zi-Kui Liu , Allison M. Beese , Wesley Reinhart , Wenjie Li
{"title":"Data-driven inverse design of MoNbTiVWZr refractory multicomponent alloys: Microstructure and mechanical properties","authors":"Lavanya Raman ,&nbsp;Arindam Debnath ,&nbsp;Erik Furton ,&nbsp;Shuang Lin ,&nbsp;Adam Krajewski ,&nbsp;Subrata Ghosh ,&nbsp;Na Liu ,&nbsp;Marcia Ahn ,&nbsp;Bed Poudel ,&nbsp;Shunli Shang ,&nbsp;Shashank Priya ,&nbsp;Zi-Kui Liu ,&nbsp;Allison M. Beese ,&nbsp;Wesley Reinhart ,&nbsp;Wenjie Li","doi":"10.1016/j.msea.2024.147475","DOIUrl":null,"url":null,"abstract":"<div><div>Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The present work generates designed compositions using high-throughput computational and machine-learning (ML) models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the room temperature mechanical properties of the alloy and were validated with experimental mechanical data obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, inverse design methodology that can effectively identify new promising multicomponent refractory alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147475"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324014060","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The present work generates designed compositions using high-throughput computational and machine-learning (ML) models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the room temperature mechanical properties of the alloy and were validated with experimental mechanical data obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, inverse design methodology that can effectively identify new promising multicomponent refractory alloys.

Abstract Image

数据驱动的 MoNbTiVWZr 难熔多组分合金反设计:微观结构和机械性能
多组分耐火合金具有在高温环境中工作的潜力。具有异质/复合微观结构的合金展现了高强度和延展性的最佳组合。本研究以利用真空电弧熔炼制造的 Mo-Nb-Ti-V-W-Zr 元素为基础,利用高通量计算和机器学习(ML)模型生成设计成分。实验观察到的相位与 CALPHAD 和 Scheil 模拟一致。ML 模型用于预测合金的室温力学性能,并与三点弯曲和压缩试验获得的实验力学数据进行了验证。这项工作共同展示了一种数据驱动的逆向设计方法,该方法可以有效地识别新的有前途的多组分耐火合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信