{"title":"Development of a GHG-based control strategy for a fleet of hybrid heat pumps to decarbonize space heating and domestic hot water","authors":"Marianne Biéron , Jérôme Le Dréau , Benjamin Haas","doi":"10.1016/j.apenergy.2024.124751","DOIUrl":null,"url":null,"abstract":"<div><div>In Europe, the building sector accounts for approximately 35 % of the energy-related emissions. Hybrid systems coordinating heat pumps and gas boilers can avoid greenhouse gas (GHG) emissions from carbonized electricity production by providing demand-side flexibility without any service interruption. This work aimed to develop a control strategy for a fleet of hybrid heat pumps to reduce GHG emissions. The electricity and gas consumption of a fleet of 3000 hybrid heat pumps, heating 100,000 dwellings spread throughout France, was evaluated. A Modelica model of a district archetype was simulated in seven cities representative of the French climatic zones to obtain the national heating demand. The marginal emission factor of the electricity consumption was assessed using a French power system model coupled with marginal emission factors for interconnected power systems, which were assessed through linear regressions. Two types of control strategies (prioritizing the heat pump and fuel switch) are evaluated considering 4 different sizing for the heat pump (120 %, 50 %, 35 %, and 20 %). Between July 2018 and June 2019, a strategy prioritizing the heat pumps would have avoided between 8000 and 26,000 t<sub>CO2eq</sub> for the power system. A strategy switching between the heat pump and the boiler based on the marginal emission factor of the electricity consumption would have avoided around 38,000 t<sub>CO2eq</sub>, with a limited influence of the sizing of the heat pump.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124751"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924021342","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In Europe, the building sector accounts for approximately 35 % of the energy-related emissions. Hybrid systems coordinating heat pumps and gas boilers can avoid greenhouse gas (GHG) emissions from carbonized electricity production by providing demand-side flexibility without any service interruption. This work aimed to develop a control strategy for a fleet of hybrid heat pumps to reduce GHG emissions. The electricity and gas consumption of a fleet of 3000 hybrid heat pumps, heating 100,000 dwellings spread throughout France, was evaluated. A Modelica model of a district archetype was simulated in seven cities representative of the French climatic zones to obtain the national heating demand. The marginal emission factor of the electricity consumption was assessed using a French power system model coupled with marginal emission factors for interconnected power systems, which were assessed through linear regressions. Two types of control strategies (prioritizing the heat pump and fuel switch) are evaluated considering 4 different sizing for the heat pump (120 %, 50 %, 35 %, and 20 %). Between July 2018 and June 2019, a strategy prioritizing the heat pumps would have avoided between 8000 and 26,000 tCO2eq for the power system. A strategy switching between the heat pump and the boiler based on the marginal emission factor of the electricity consumption would have avoided around 38,000 tCO2eq, with a limited influence of the sizing of the heat pump.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.