Theoretical study of size and shell composition effect of TiO2 core-shell mesoporous microsphere on UV absorption effectivity for photocatalytic application

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Yury E. Geints, Ekaterina K. Panina
{"title":"Theoretical study of size and shell composition effect of TiO2 core-shell mesoporous microsphere on UV absorption effectivity for photocatalytic application","authors":"Yury E. Geints,&nbsp;Ekaterina K. Panina","doi":"10.1016/j.jqsrt.2024.109246","DOIUrl":null,"url":null,"abstract":"<div><div>Microdispersed photocatalysts based on titanium dioxide (TiO<sub>2</sub>) in the form of hollow core-shell microspheres (microcapsules) with mesoporous structure are widely demanded in modern critical technologies related to the catalysis of various chemicals, solving environmental problems, and obtaining cheap fuel. To date, a number of experimental works are known, showing that geometrical parameters of microcapsules (size, shell thickness), as well as microstructural composition (nanosized metal additives, additional inner dielectric core- the \"yolk\") noticeably affect their photocatalytic activity. At the same time, a valuable physical description of the optical properties of porous microcapsules has not been presented in the literature so far. Using the finite element method, we perform a full-wave theoretical simulation of the optical field inside a hollow microsphere whose shell is randomly self-assembled from multiple TiO<sub>2</sub> nanoparticles forming an irregular nanoporous structure. We provide a unified physical explanation of the published experimental data on the optical activity of titanium-dioxide microcapsules and show that the existing theoretical models do not always give a correct interpretation of the observed empirical behaviors.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109246"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003534","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Microdispersed photocatalysts based on titanium dioxide (TiO2) in the form of hollow core-shell microspheres (microcapsules) with mesoporous structure are widely demanded in modern critical technologies related to the catalysis of various chemicals, solving environmental problems, and obtaining cheap fuel. To date, a number of experimental works are known, showing that geometrical parameters of microcapsules (size, shell thickness), as well as microstructural composition (nanosized metal additives, additional inner dielectric core- the "yolk") noticeably affect their photocatalytic activity. At the same time, a valuable physical description of the optical properties of porous microcapsules has not been presented in the literature so far. Using the finite element method, we perform a full-wave theoretical simulation of the optical field inside a hollow microsphere whose shell is randomly self-assembled from multiple TiO2 nanoparticles forming an irregular nanoporous structure. We provide a unified physical explanation of the published experimental data on the optical activity of titanium-dioxide microcapsules and show that the existing theoretical models do not always give a correct interpretation of the observed empirical behaviors.
二氧化钛核壳介孔微球的尺寸和外壳成分对光催化应用中紫外线吸收效果影响的理论研究
以具有介孔结构的空心核壳微球(微胶囊)形式的二氧化钛(TiO2)为基础的微分散光催化剂在与催化各种化学物质、解决环境问题和获取廉价燃料相关的现代关键技术中有着广泛的需求。迄今为止,已有大量实验研究表明,微胶囊的几何参数(尺寸、外壳厚度)以及微结构组成(纳米级金属添加剂、额外的内电介质核心--"卵黄")会明显影响其光催化活性。同时,迄今为止,文献中还没有关于多孔微胶囊光学特性的有价值的物理描述。我们采用有限元法对空心微球内部的光场进行了全波理论模拟,该微球的外壳由多个 TiO2 纳米粒子随机自组装而成,形成了不规则的纳米多孔结构。我们对已公布的二氧化钛微胶囊光学活性实验数据提供了统一的物理解释,并表明现有的理论模型并不总能正确解释观察到的经验行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信