{"title":"Deterministic computation of quantiles in a Lipschitz framework","authors":"Yurun Gu , Clément Rey","doi":"10.1016/j.cam.2024.116344","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we focus on computing the quantiles of a random variable <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued random variable, <span><math><mrow><mi>d</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><mi>f</mi><mo>:</mo><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of <span><math><mi>X</mi></math></span> is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> at a given level <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. With a fixed budget of <span><math><mi>N</mi></math></span> function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ρ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>) and a polynomial deterministic convergence rate for <span><math><mrow><mi>d</mi><mo>></mo><mn>1</mn></mrow></math></span> (<span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span>) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of <span><math><mi>f</mi></math></span> is known or unknown.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116344"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005922","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we focus on computing the quantiles of a random variable , where is a -valued random variable, , and is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of at a given level . With a fixed budget of function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for ( with ) and a polynomial deterministic convergence rate for () and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of is known or unknown.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.