{"title":"Biosynthesis of ZnO nanocomposites from Mentha spicata applications of antioxidant, antimicrobial and genotoxicity advances in MCF-7 cell line","authors":"Azhagu Madhavan Sivalingam","doi":"10.1016/j.sbsr.2024.100707","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on enhancing the, Spearmint (<em>Mentha spicata</em>), an aromatic herb indigenous to Europe and Asia, which is valued for its refreshing flavor and potential health benefits. This herb is widely utilized in culinary practices, medicinal applications, and cosmetic formulations. The ethanol extract derived from the <em>M. spicata</em> leaf contains is rich secondary metabolites with various bioactive properties: Specifically, such as tannins, flavonoids, and polyphenols are known for their antioxidant and anti-inflammatory effects, saponins help reduce cholesterol, and alkaloids have analgesic properties. The extract has a total flavonoid content (TFC) of 231.37 ± 2.05 mg GAE/g and a total phenol content (TPC) of 247.32 ± 5.07 mg GAE/g. Zinc oxide (ZnO) nanoparticles were synthesized from this extract and subsequently characterized through various analytical techniques. The absorbance measurement at 437 nm confirmed the successful nanoparticle synthesis. FTIR spectra showed water-related absorption bands at 3330 cm<sup>−1</sup> and 3337 cm<sup>−1</sup>. Scanning electron microscopy (SEM) indicated the presence of spherical nanoparticles of about 25.4 nm, while transmission electron microscopy (TEM) illustrated particles ranging from 20 to 50 nm with high crystallinity and a lattice spacing of 0.297 nm. X-ray diffraction (XRD) analysis confirmed their crystalline structure with distinct Bragg reflections at 39.1°, 46.1°, 68.7°, and 79.2°, which corresponding to (111), (200), (220,311) planes, respectively (JCPDS card no. 01–080-1876). Energy-dispersive X-ray spectroscopy (EDX) confirmed the high purity of the synthesized ZnO nanocrystals. The nanoparticles demonstrated significant antioxidant activity with radical scavenging rates up to 97.33 %, effective antimicrobial properties, and notable anticancer activity, achieving 99.75 % inhibition of MCF-7 cells at 40 μg/mL. These findings highlight the nanoparticles' potential applications in health and medicine.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100707"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on enhancing the, Spearmint (Mentha spicata), an aromatic herb indigenous to Europe and Asia, which is valued for its refreshing flavor and potential health benefits. This herb is widely utilized in culinary practices, medicinal applications, and cosmetic formulations. The ethanol extract derived from the M. spicata leaf contains is rich secondary metabolites with various bioactive properties: Specifically, such as tannins, flavonoids, and polyphenols are known for their antioxidant and anti-inflammatory effects, saponins help reduce cholesterol, and alkaloids have analgesic properties. The extract has a total flavonoid content (TFC) of 231.37 ± 2.05 mg GAE/g and a total phenol content (TPC) of 247.32 ± 5.07 mg GAE/g. Zinc oxide (ZnO) nanoparticles were synthesized from this extract and subsequently characterized through various analytical techniques. The absorbance measurement at 437 nm confirmed the successful nanoparticle synthesis. FTIR spectra showed water-related absorption bands at 3330 cm−1 and 3337 cm−1. Scanning electron microscopy (SEM) indicated the presence of spherical nanoparticles of about 25.4 nm, while transmission electron microscopy (TEM) illustrated particles ranging from 20 to 50 nm with high crystallinity and a lattice spacing of 0.297 nm. X-ray diffraction (XRD) analysis confirmed their crystalline structure with distinct Bragg reflections at 39.1°, 46.1°, 68.7°, and 79.2°, which corresponding to (111), (200), (220,311) planes, respectively (JCPDS card no. 01–080-1876). Energy-dispersive X-ray spectroscopy (EDX) confirmed the high purity of the synthesized ZnO nanocrystals. The nanoparticles demonstrated significant antioxidant activity with radical scavenging rates up to 97.33 %, effective antimicrobial properties, and notable anticancer activity, achieving 99.75 % inhibition of MCF-7 cells at 40 μg/mL. These findings highlight the nanoparticles' potential applications in health and medicine.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.