Integrating near-infrared hyperspectral imaging with machine learning and feature selection: Detecting adulteration of extra-virgin olive oil with lower-grade olive oils and hazelnut oil
{"title":"Integrating near-infrared hyperspectral imaging with machine learning and feature selection: Detecting adulteration of extra-virgin olive oil with lower-grade olive oils and hazelnut oil","authors":"Derick Malavi , Katleen Raes , Sam Van Haute","doi":"10.1016/j.crfs.2024.100913","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting adulteration in extra virgin olive oil (EVOO) is particularly challenging with oils of similar chemical composition. This study applies near-infrared hyperspectral imaging (NIR-HSI) and machine learning (ML) to detect EVOO adulteration with hazelnut, refined olive, and olive pomace oils at various concentrations (1%, 5%, 10%, 20%, 40%, and 100% m/m). Savitzky-Golay filtering, first and second derivatives, multiplicative scatter correction (MSC), standard normal variate (SNV), and their combinations were used to preprocess the spectral data, with Principal Component Analysis (PCA) reducing dimensionality. Classification was performed using Partial Least Squares-Discriminant Analysis (PLS-DA) and ML algorithms, including k-Nearest Neighbors (k-NN), Naïve Bayes, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). PLS-DA, k-NN, RF, SVM, NB, and ANN models achieved accuracy rates of 97.0–99.0%, 96.2–100%, 96.5–100%, 98.6–99.5%, 93.9–99.7%, and 99.2–100%, respectively, in discriminating between pure EVOO, adulterants, and adulterated oils. PLS-DA, RF, SVM, and ANN significantly outperformed Naïve Bayes (p < 0.05) in binary classification, with Matthews correlation coefficient (MCC) values exceeding 0.90. All the binary classifiers except Naïve Bayes, when coupled with SNV/MSC, Savitzky-Golay smoothing and derivatives, consistently achieved perfect scores (1.0) for accuracy, sensitivity, specificity, F1 score, precision, and MCC in distinguishing pure EVOO from adulterated oils. No significant differences (p > 0.05) in model performance were found between those using full spectra and those based on key variable selection. However, PLS-DA and ANN significantly outperformed k-NN, RF, and SVM (p < 0.05), with MCC values ranging from 0.95 to 1.00, indicating superior classification performance. These findings demonstrate that combining NIR-HSI with machine learning, along with key variable selection, potentially offers an effective, non-destructive solution for detecting adulteration in EVOO and combating fraud in the olive oil industry.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"Article 100913"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124002399","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting adulteration in extra virgin olive oil (EVOO) is particularly challenging with oils of similar chemical composition. This study applies near-infrared hyperspectral imaging (NIR-HSI) and machine learning (ML) to detect EVOO adulteration with hazelnut, refined olive, and olive pomace oils at various concentrations (1%, 5%, 10%, 20%, 40%, and 100% m/m). Savitzky-Golay filtering, first and second derivatives, multiplicative scatter correction (MSC), standard normal variate (SNV), and their combinations were used to preprocess the spectral data, with Principal Component Analysis (PCA) reducing dimensionality. Classification was performed using Partial Least Squares-Discriminant Analysis (PLS-DA) and ML algorithms, including k-Nearest Neighbors (k-NN), Naïve Bayes, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). PLS-DA, k-NN, RF, SVM, NB, and ANN models achieved accuracy rates of 97.0–99.0%, 96.2–100%, 96.5–100%, 98.6–99.5%, 93.9–99.7%, and 99.2–100%, respectively, in discriminating between pure EVOO, adulterants, and adulterated oils. PLS-DA, RF, SVM, and ANN significantly outperformed Naïve Bayes (p < 0.05) in binary classification, with Matthews correlation coefficient (MCC) values exceeding 0.90. All the binary classifiers except Naïve Bayes, when coupled with SNV/MSC, Savitzky-Golay smoothing and derivatives, consistently achieved perfect scores (1.0) for accuracy, sensitivity, specificity, F1 score, precision, and MCC in distinguishing pure EVOO from adulterated oils. No significant differences (p > 0.05) in model performance were found between those using full spectra and those based on key variable selection. However, PLS-DA and ANN significantly outperformed k-NN, RF, and SVM (p < 0.05), with MCC values ranging from 0.95 to 1.00, indicating superior classification performance. These findings demonstrate that combining NIR-HSI with machine learning, along with key variable selection, potentially offers an effective, non-destructive solution for detecting adulteration in EVOO and combating fraud in the olive oil industry.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.