Convergence estimates of the Tikhonov-type regularized solutions for the time-domain fluorescence diffuse optical tomography

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chunlong Sun , Wenlong Zhang
{"title":"Convergence estimates of the Tikhonov-type regularized solutions for the time-domain fluorescence diffuse optical tomography","authors":"Chunlong Sun ,&nbsp;Wenlong Zhang","doi":"10.1016/j.aml.2024.109353","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the Tikhonov-type regularized solutions and their finite element solutions to the time-domain fluorescence diffuse optical tomography. Firstly, we analyze the finite element method for solving the direct problem and give its error estimates. With the classical source condition, we further establish the convergence estimates of the regularized solutions and their finite element solutions. The error estimates present explicit dependence on the critical parameters like noise level, regularization parameter, mesh size and time step size.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109353"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the Tikhonov-type regularized solutions and their finite element solutions to the time-domain fluorescence diffuse optical tomography. Firstly, we analyze the finite element method for solving the direct problem and give its error estimates. With the classical source condition, we further establish the convergence estimates of the regularized solutions and their finite element solutions. The error estimates present explicit dependence on the critical parameters like noise level, regularization parameter, mesh size and time step size.
时域荧光漫反射光学断层扫描的提霍诺夫型正则化解决方案的收敛性估计
在这项工作中,我们研究了时域荧光漫反射光学层析成像的 Tikhonov 型正则化解决方案及其有限元解决方案。首先,我们分析了求解直接问题的有限元方法,并给出了其误差估计。在经典源条件下,我们进一步建立了正则化解及其有限元解的收敛估计。误差估计值与噪声水平、正则化参数、网格大小和时间步长等关键参数存在明确的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信