Dun Cao , Bo Peng , Yubin Wang , Fayez Alqahtani , Jinyu Zhang , Jin Wang
{"title":"Dual-timescale resource management for multi-type caching placement and multi-user computation offloading in Internet of Vehicle","authors":"Dun Cao , Bo Peng , Yubin Wang , Fayez Alqahtani , Jinyu Zhang , Jin Wang","doi":"10.1016/j.simpat.2024.103025","DOIUrl":null,"url":null,"abstract":"<div><div>In Internet of Vehicle (IoV), edge computing can effectively reduce task processing delays and meet the real-time needs of connected-vehicle applications. However, since the requirements for caching and computing resources vary across heterogeneous vehicle requests, a new challenge is posed on the resource management in the three-tier cloud–edge–end architecture, particularly when multi users offload tasks in the same time. Our work comprehensively considers various scenarios involving the deployment of multiple caching types from multi-users and the distinct time scales of offloading and updating, then builds a joint optimization caching placement, computation offloading and computational resource allocation model, aiming to minimize overall latency. Meanwhile, to better solving the model, we propose the Multi-node Collaborative Caching, Offloading, and Resource Allocation Algorithm (MCCO-RAA). MCCO-RAA utilizes dual time scales to optimize the problem: employing a Bellman optimization idea-based multi-node collaborative greedy caching placement strategy at large time scales, and a computational offloading and resource allocation strategy based on a two-tier iterative Deep Deterministic Policy Gradient (DDPG) and cooperative game at small time scales. Experimental results demonstrate that our proposed scheme achieves a 28% reduction in overall system latency compared to the baseline scheme, with smoother latency variations under different parameters.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"138 ","pages":"Article 103025"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001394","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In Internet of Vehicle (IoV), edge computing can effectively reduce task processing delays and meet the real-time needs of connected-vehicle applications. However, since the requirements for caching and computing resources vary across heterogeneous vehicle requests, a new challenge is posed on the resource management in the three-tier cloud–edge–end architecture, particularly when multi users offload tasks in the same time. Our work comprehensively considers various scenarios involving the deployment of multiple caching types from multi-users and the distinct time scales of offloading and updating, then builds a joint optimization caching placement, computation offloading and computational resource allocation model, aiming to minimize overall latency. Meanwhile, to better solving the model, we propose the Multi-node Collaborative Caching, Offloading, and Resource Allocation Algorithm (MCCO-RAA). MCCO-RAA utilizes dual time scales to optimize the problem: employing a Bellman optimization idea-based multi-node collaborative greedy caching placement strategy at large time scales, and a computational offloading and resource allocation strategy based on a two-tier iterative Deep Deterministic Policy Gradient (DDPG) and cooperative game at small time scales. Experimental results demonstrate that our proposed scheme achieves a 28% reduction in overall system latency compared to the baseline scheme, with smoother latency variations under different parameters.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.