Taijie Chen , Zijian Shen , Siyuan Feng , Linchuan Yang , Jintao Ke
{"title":"Dynamic matching radius decision model for on-demand ride services: A deep multi-task learning approach","authors":"Taijie Chen , Zijian Shen , Siyuan Feng , Linchuan Yang , Jintao Ke","doi":"10.1016/j.tre.2024.103822","DOIUrl":null,"url":null,"abstract":"<div><div>As ride-hailing services have experienced significant growth, most research has concentrated on the dispatching mode, where drivers must accept the platform’s assigned trip requests. However, the broadcasting mode, in which drivers can freely choose their preferred orders from those broadcast by the platform, has received less attention. One crucial but challenging task in such a system is the determination of the matching radius, which usually varies across space, time, and real-time supply/demand characteristics. This study develops a <strong>D</strong>eep <strong>L</strong>earning-based <strong>M</strong>atching <strong>R</strong>adius <strong>D</strong>ecision (DL-MRD) model that predicts key system performance metrics for a range of matching radii, which enables the ride-hailing platform to select an optimal matching radius that maximizes overall system performance according to real-time supply and demand information. To simultaneously maximize multiple system performance metrics for matching radius determination, we devise a novel multi-task learning algorithm named <strong>W</strong>eighted <strong>E</strong>xponential <strong>S</strong>moothing <strong>M</strong>ulti-task (WESM) learning strategy that enhances convergence speed of each task (corresponding to the optimization of one metric) and delivers more accurate overall predictions. We evaluate our methods in a simulation environment designed for broadcasting-mode-based ride-hailing service. Our findings reveal that dynamically adjusting matching radii based on our proposed approach significantly improves system performance.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"193 ","pages":"Article 103822"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524004137","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As ride-hailing services have experienced significant growth, most research has concentrated on the dispatching mode, where drivers must accept the platform’s assigned trip requests. However, the broadcasting mode, in which drivers can freely choose their preferred orders from those broadcast by the platform, has received less attention. One crucial but challenging task in such a system is the determination of the matching radius, which usually varies across space, time, and real-time supply/demand characteristics. This study develops a Deep Learning-based Matching Radius Decision (DL-MRD) model that predicts key system performance metrics for a range of matching radii, which enables the ride-hailing platform to select an optimal matching radius that maximizes overall system performance according to real-time supply and demand information. To simultaneously maximize multiple system performance metrics for matching radius determination, we devise a novel multi-task learning algorithm named Weighted Exponential Smoothing Multi-task (WESM) learning strategy that enhances convergence speed of each task (corresponding to the optimization of one metric) and delivers more accurate overall predictions. We evaluate our methods in a simulation environment designed for broadcasting-mode-based ride-hailing service. Our findings reveal that dynamically adjusting matching radii based on our proposed approach significantly improves system performance.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.