{"title":"Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm","authors":"","doi":"10.1016/j.tsep.2024.103021","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the energy-economic analysis and optimization of a shell and tube heat exchanger. A water-water, segmental baffled shell and tube heat exchanger was designed using the Kern method and analysed by performing energy and economic modelling. The analysis is carried out considering the design variables on the shell side i.e. baffle cut, baffle spacing, shell diameter and tube side variables i.e. tube layout, tube outside diameter, number of tube passes and number of tubes. The multi-objective heat transfer search algorithm was used to optimize the heat exchanger for minimum total cost and maximum heat exchanger efficiency. Multiple optimal solutions were presented using the Pareto optimal curve. TOPSIS selection criteria was used to identify the optimum operating condition. Within the given bounds of the variables, the shell and tube heat exchanger can be operated at a minimum cost of 72,000 $/year resulting in 16.4 % efficiency, or, it can be operated at a maximum efficiency of 81.6 % with a total cost of 275,000 $/year. The scattered distribution of shell diameter, baffle spacing, number of tube passes and number of tubes between the lower and upper bound represent their substantial role in optimizing the heat exchanger performance. The number of tubes and tube passes showed the maximum variation in efficiency, while significantly less impact was observed when the tube layout was altered.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the energy-economic analysis and optimization of a shell and tube heat exchanger. A water-water, segmental baffled shell and tube heat exchanger was designed using the Kern method and analysed by performing energy and economic modelling. The analysis is carried out considering the design variables on the shell side i.e. baffle cut, baffle spacing, shell diameter and tube side variables i.e. tube layout, tube outside diameter, number of tube passes and number of tubes. The multi-objective heat transfer search algorithm was used to optimize the heat exchanger for minimum total cost and maximum heat exchanger efficiency. Multiple optimal solutions were presented using the Pareto optimal curve. TOPSIS selection criteria was used to identify the optimum operating condition. Within the given bounds of the variables, the shell and tube heat exchanger can be operated at a minimum cost of 72,000 $/year resulting in 16.4 % efficiency, or, it can be operated at a maximum efficiency of 81.6 % with a total cost of 275,000 $/year. The scattered distribution of shell diameter, baffle spacing, number of tube passes and number of tubes between the lower and upper bound represent their substantial role in optimizing the heat exchanger performance. The number of tubes and tube passes showed the maximum variation in efficiency, while significantly less impact was observed when the tube layout was altered.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.