Highly-enhanced gas-sensing performance of metal-doped In2O3 microtubes from acceptor doping and double surface adsorption

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
W.J. Wu, J.C. Xu, B. Hong, J. Li, Y.X. Zeng, X.L. Peng, H.W. Chen, X.Q. Wang
{"title":"Highly-enhanced gas-sensing performance of metal-doped In2O3 microtubes from acceptor doping and double surface adsorption","authors":"W.J. Wu,&nbsp;J.C. Xu,&nbsp;B. Hong,&nbsp;J. Li,&nbsp;Y.X. Zeng,&nbsp;X.L. Peng,&nbsp;H.W. Chen,&nbsp;X.Q. Wang","doi":"10.1016/j.mseb.2024.117784","DOIUrl":null,"url":null,"abstract":"<div><div>The different valent metal-doping is a feasible and convenient way to adjust the microstructures and electron concentration of In<sub>2</sub>O<sub>3</sub> gas sensors. In this paper, the different valence metals (Zn<sup>2+</sup>, Sb<sup>3+</sup>, Zr<sup>4+</sup> and Nb<sup>5+</sup>) are doped into MIL-68 (In) metal–organic frameworks (MOFs) by solvothermal method, and then In<sub>2</sub>O<sub>3</sub> and metal-doped In<sub>2</sub>O<sub>3</sub> microtubes are obtained by pyrolysis MIL-68 MOFs. All samples exhibit the similar microtubular structures, indicating oxygen adsorption on both inner and outer surface. The average grain size of metal-doped In<sub>2</sub>O<sub>3</sub> microtubes decreases a little while the specific surface area increases greatly. Metal-doping greatly affects the formaldehyde gas-sensing performance, and Zn<sup>2+</sup>-doped In<sub>2</sub>O<sub>3</sub> sensor presents the highest response value (188.56), shortest response/recovery times and excellent selectivity to formaldehyde gas at 210 ℃. Compared the microstructural and gas-sensing parameters of In<sub>2</sub>O<sub>3</sub> sensor, the specific surface area and oxygen vacancies of metal-doped In<sub>2</sub>O<sub>3</sub> sensors enhance the surface <span><math><msup><mrow><mi>O</mi></mrow><mo>-</mo></msup></math></span>. Moreover, acceptor Zn<sup>2+</sup>-doping directly extracts electrons from conduction band of Zn<sup>2+</sup>-doped In<sub>2</sub>O<sub>3</sub> sensor, which greatly increases the resistance in air and the thickness of electron deletion layer for Zn<sup>2+</sup>-doped In<sub>2</sub>O<sub>3</sub> sensor.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117784"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006135","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The different valent metal-doping is a feasible and convenient way to adjust the microstructures and electron concentration of In2O3 gas sensors. In this paper, the different valence metals (Zn2+, Sb3+, Zr4+ and Nb5+) are doped into MIL-68 (In) metal–organic frameworks (MOFs) by solvothermal method, and then In2O3 and metal-doped In2O3 microtubes are obtained by pyrolysis MIL-68 MOFs. All samples exhibit the similar microtubular structures, indicating oxygen adsorption on both inner and outer surface. The average grain size of metal-doped In2O3 microtubes decreases a little while the specific surface area increases greatly. Metal-doping greatly affects the formaldehyde gas-sensing performance, and Zn2+-doped In2O3 sensor presents the highest response value (188.56), shortest response/recovery times and excellent selectivity to formaldehyde gas at 210 ℃. Compared the microstructural and gas-sensing parameters of In2O3 sensor, the specific surface area and oxygen vacancies of metal-doped In2O3 sensors enhance the surface O-. Moreover, acceptor Zn2+-doping directly extracts electrons from conduction band of Zn2+-doped In2O3 sensor, which greatly increases the resistance in air and the thickness of electron deletion layer for Zn2+-doped In2O3 sensor.
掺杂金属的 In2O3 微管从受体掺杂和双表面吸附中获得高度增强的气体传感性能
掺杂不同价态的金属是调整 In2O3 气体传感器微结构和电子浓度的一种可行而便捷的方法。本文采用溶热法将不同价态的金属(Zn2+、Sb3+、Zr4+和Nb5+)掺杂到MIL-68(In)金属有机框架(MOFs)中,然后通过热解MIL-68 MOFs得到In2O3和金属掺杂的In2O3微管。所有样品都表现出相似的微管结构,表明内外表面都吸附了氧气。掺杂金属的 In2O3 微管的平均粒度略有减小,而比表面积却大大增加。金属掺杂对甲醛气体传感性能有很大影响,掺杂 Zn2+ 的 In2O3 传感器在 210 ℃ 下具有最高的响应值(188.56)、最短的响应/恢复时间和对甲醛气体的良好选择性。对比 In2O3 传感器的微观结构和气体传感参数,掺金属 In2O3 传感器的比表面积和氧空位提高了表面 O-。此外,受体 Zn2+ 的掺杂直接从掺杂 Zn2+ 的 In2O3 传感器的导带中提取电子,这大大增加了 Zn2+ 掺杂 In2O3 传感器在空气中的电阻和电子删除层的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信