Enhancing efficiency of dense array CPV receivers with controlled DC-DC converters and adaptive microfluidic cooling under non-uniform solar irradiance

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Desideri Regany , Francesc Majós Palau , Alicia Crespo , Jérôme Barrau , Montse Vilarrubí , Joan Rosell-Urrutia
{"title":"Enhancing efficiency of dense array CPV receivers with controlled DC-DC converters and adaptive microfluidic cooling under non-uniform solar irradiance","authors":"Desideri Regany ,&nbsp;Francesc Majós Palau ,&nbsp;Alicia Crespo ,&nbsp;Jérôme Barrau ,&nbsp;Montse Vilarrubí ,&nbsp;Joan Rosell-Urrutia","doi":"10.1016/j.solmat.2024.113262","DOIUrl":null,"url":null,"abstract":"<div><div>Concentrating solar technologies offer substantial potential for optimizing solar energy for heat and power generation, particularly in green hydrogen production. This study investigates the use of commercial high efficiency concentrated photovoltaic (CPV) cells in a central tower concentrating solar system to enhance energy conversion efficiency. By integrating DC-DC converters with self-adaptive microfluidic cooling systems, we address current mismatches and temperature variations that affect CPV performance. The novel receiver design ensures scalability for large-scale implementations by implementing the electrical connections between DC-DC converters and each CPV cell without creating shaded areas. We numerically model and simulate the thermodynamic and electrical characteristics of a dense array CPV receiver, evaluating six illumination profiles. Our results indicate a significant improvement in receiver efficiency compared to the traditional configuration with bypass diodes, demonstrating an increase from 23.4 % to 30.3 % under a central Gaussian illumination profile, and reaching up to 38 % relative efficiency improvement depending on the applied profile. Power transfer losses decrease from 26 % to 10 % when 200 kW/m<sup>2</sup> of illumination non-uniformity occurs. The proposed solution enhances reliability and energy conversion efficiency, presenting a viable path forward for large-scale CPV applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113262"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Concentrating solar technologies offer substantial potential for optimizing solar energy for heat and power generation, particularly in green hydrogen production. This study investigates the use of commercial high efficiency concentrated photovoltaic (CPV) cells in a central tower concentrating solar system to enhance energy conversion efficiency. By integrating DC-DC converters with self-adaptive microfluidic cooling systems, we address current mismatches and temperature variations that affect CPV performance. The novel receiver design ensures scalability for large-scale implementations by implementing the electrical connections between DC-DC converters and each CPV cell without creating shaded areas. We numerically model and simulate the thermodynamic and electrical characteristics of a dense array CPV receiver, evaluating six illumination profiles. Our results indicate a significant improvement in receiver efficiency compared to the traditional configuration with bypass diodes, demonstrating an increase from 23.4 % to 30.3 % under a central Gaussian illumination profile, and reaching up to 38 % relative efficiency improvement depending on the applied profile. Power transfer losses decrease from 26 % to 10 % when 200 kW/m2 of illumination non-uniformity occurs. The proposed solution enhances reliability and energy conversion efficiency, presenting a viable path forward for large-scale CPV applications.
利用可控 DC-DC 转换器和自适应微流体冷却技术提高非均匀太阳辐照条件下密集阵列 CPV 接收器的效率
聚光太阳能技术为优化太阳能供热和发电提供了巨大潜力,尤其是在绿色制氢方面。本研究探讨了在中央塔式聚光太阳能系统中使用商用高效聚光光伏(CPV)电池来提高能量转换效率的问题。通过将 DC-DC 转换器与自适应微流体冷却系统集成,我们解决了影响 CPV 性能的电流失配和温度变化问题。新颖的接收器设计通过实现 DC-DC 转换器与每个 CPV 电池之间的电气连接,确保了大规模实施的可扩展性,而不会产生阴影区域。我们对密集阵列 CPV 接收器的热力学和电气特性进行了数值建模和模拟,并对六种光照情况进行了评估。我们的研究结果表明,与传统的旁路二极管配置相比,接收器的效率有了显著提高,在中央高斯光照曲线下,接收器的效率从 23.4% 提高到 30.3%,根据应用的光照曲线,相对效率提高可达 38%。当光照不均匀度为 200 kW/m2 时,功率传输损耗从 26% 降至 10%。所提出的解决方案提高了可靠性和能量转换效率,为大规模 CPV 应用提供了一条可行之路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信