Profiles of peripheral regulatory T cells forecasts the feasibility of steroid withdrawal after liver transplantation based on cellular thermal modeling
{"title":"Profiles of peripheral regulatory T cells forecasts the feasibility of steroid withdrawal after liver transplantation based on cellular thermal modeling","authors":"","doi":"10.1016/j.tsep.2024.103022","DOIUrl":null,"url":null,"abstract":"<div><div>After liver transplantation, steroid therapy is often used to prevent rejection. However, long-term steroid use can lead to serious side effects, therefore, this study aimed to evaluate the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation through cellular thermal modeling and real-time monitoring of intracellular thermodynamics. In this study, cellular thermal modeling techniques were used to simulate the thermodynamic characteristics of peripheral TREgs under different conditions. The dynamic changes of peripheral Treg in liver transplantation animal models were monitored by flow cytometry and molecular biology. Significant changes in peripheral Treg profiles were observed after initiation of steroid therapy, especially in the discontinuation group, and these changes were strongly associated with the restoration of immune homeostasis. Real-time monitoring of the thermodynamic data revealed that peripheral Treg activity showed a specific temperature dependence in the cellular thermal model. Cell thermal modeling combined with real-time monitoring of intracellular thermodynamics provides a new perspective for evaluating the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation. Strengthening the dynamic monitoring of peripheral Treg spectrum provides an important basis for the formulation of personalized immunosuppression strategies, and improves the therapeutic effect and quality of life of liver transplant patients.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006401","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
After liver transplantation, steroid therapy is often used to prevent rejection. However, long-term steroid use can lead to serious side effects, therefore, this study aimed to evaluate the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation through cellular thermal modeling and real-time monitoring of intracellular thermodynamics. In this study, cellular thermal modeling techniques were used to simulate the thermodynamic characteristics of peripheral TREgs under different conditions. The dynamic changes of peripheral Treg in liver transplantation animal models were monitored by flow cytometry and molecular biology. Significant changes in peripheral Treg profiles were observed after initiation of steroid therapy, especially in the discontinuation group, and these changes were strongly associated with the restoration of immune homeostasis. Real-time monitoring of the thermodynamic data revealed that peripheral Treg activity showed a specific temperature dependence in the cellular thermal model. Cell thermal modeling combined with real-time monitoring of intracellular thermodynamics provides a new perspective for evaluating the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation. Strengthening the dynamic monitoring of peripheral Treg spectrum provides an important basis for the formulation of personalized immunosuppression strategies, and improves the therapeutic effect and quality of life of liver transplant patients.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.