Ashwin Narendra Raut , Musa Adamu , Ranjit J. Singh , Yasser E. Ibrahim , Anant Lal Murmu , Omar Shabbir Ahmed , Supriya Janga
{"title":"Investigating crumb rubber-modified geopolymer composites derived from steel slag for enhanced thermal performance","authors":"Ashwin Narendra Raut , Musa Adamu , Ranjit J. Singh , Yasser E. Ibrahim , Anant Lal Murmu , Omar Shabbir Ahmed , Supriya Janga","doi":"10.1016/j.jestch.2024.101880","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal performance of building materials is often improved by introducing air voids through foaming. However, this typically results in a reduction in compressive strength. To address this issue, an experimental study was conducted to develop thermally efficient geopolymer blocks using three grades of crumb rubber (CR), without compromising compressive strength. Tests such as compressive strength, tensile strength, thermal conductivity, water absorption, and porosity were carried out to assess the performance of these blocks in comparison to conventional geopolymer blocks. The CR-incorporated geopolymer blocks demonstrated low thermal conductivity, ranging from 0.63 to 0.43 W/mK, along with a reduced environmental impact and carbon footprint. Importantly, they exhibited high compressive strength, ranging from 25 to 52 MPa, which exceeds the required strength for first-class bricks (12 MPa). A computational conjugate heat transfer analysis was also carried out to evaluate the strength of heat transferred through the solid media to the internal fluid media. It contributes to the advancement of environmentally conscious building materials, emphasizing the potential benefits of crumb rubber-incorporated geopolymer composites as a novel material for building construction purpose.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"59 ","pages":"Article 101880"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002660","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal performance of building materials is often improved by introducing air voids through foaming. However, this typically results in a reduction in compressive strength. To address this issue, an experimental study was conducted to develop thermally efficient geopolymer blocks using three grades of crumb rubber (CR), without compromising compressive strength. Tests such as compressive strength, tensile strength, thermal conductivity, water absorption, and porosity were carried out to assess the performance of these blocks in comparison to conventional geopolymer blocks. The CR-incorporated geopolymer blocks demonstrated low thermal conductivity, ranging from 0.63 to 0.43 W/mK, along with a reduced environmental impact and carbon footprint. Importantly, they exhibited high compressive strength, ranging from 25 to 52 MPa, which exceeds the required strength for first-class bricks (12 MPa). A computational conjugate heat transfer analysis was also carried out to evaluate the strength of heat transferred through the solid media to the internal fluid media. It contributes to the advancement of environmentally conscious building materials, emphasizing the potential benefits of crumb rubber-incorporated geopolymer composites as a novel material for building construction purpose.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)