Enhanced charge separation of NiO/ZnO P-N heterojunction nanorod arrays for photoelectrochemical water splitting

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Junhao Cai , Heng Tao , Yaru Peng , Xiang Zhao , Po Hu , Yuan Zhou , Hao Lyu , Youtang Gao , Shuiwang Guo
{"title":"Enhanced charge separation of NiO/ZnO P-N heterojunction nanorod arrays for photoelectrochemical water splitting","authors":"Junhao Cai ,&nbsp;Heng Tao ,&nbsp;Yaru Peng ,&nbsp;Xiang Zhao ,&nbsp;Po Hu ,&nbsp;Yuan Zhou ,&nbsp;Hao Lyu ,&nbsp;Youtang Gao ,&nbsp;Shuiwang Guo","doi":"10.1016/j.surfin.2024.105376","DOIUrl":null,"url":null,"abstract":"<div><div>In pursuing efficient photoelectrochemical (PEC) water splitting, core-shell heterojunction nanowire arrays photoanode have emerged as a promising candidate. This study presents the successful design and construction of a NiO/ZnO p-n heterojunction nanowire array, which facilitates the separation and transmission of charge, effectively suppresses photo corrosion of the photoanode, and showcases remarkable PEC water splitting performance. Specifically, the optimized NiO/ZnO core-shell photoanode exhibited a remarkable 10.5-fold increase in photoelectric conversion efficiency and a 6.6-fold increase in photocurrent density at 1.23 V relative to pure ZnO. Furthermore, an in-depth analysis of the band structure and the PEC water splitting mechanism of the NiO/ZnO photoanode elucidated the advantages of the p-n heterojunction in effectively separating photo-induced carriers. This work introduces a novel concept for the design and optimization of the core-shell structure of efficient solar fuel production, contributing to the development of renewable energy technology.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105376"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015323","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In pursuing efficient photoelectrochemical (PEC) water splitting, core-shell heterojunction nanowire arrays photoanode have emerged as a promising candidate. This study presents the successful design and construction of a NiO/ZnO p-n heterojunction nanowire array, which facilitates the separation and transmission of charge, effectively suppresses photo corrosion of the photoanode, and showcases remarkable PEC water splitting performance. Specifically, the optimized NiO/ZnO core-shell photoanode exhibited a remarkable 10.5-fold increase in photoelectric conversion efficiency and a 6.6-fold increase in photocurrent density at 1.23 V relative to pure ZnO. Furthermore, an in-depth analysis of the band structure and the PEC water splitting mechanism of the NiO/ZnO photoanode elucidated the advantages of the p-n heterojunction in effectively separating photo-induced carriers. This work introduces a novel concept for the design and optimization of the core-shell structure of efficient solar fuel production, contributing to the development of renewable energy technology.

Abstract Image

用于光电化学水分离的增强型氧化镍/氧化锌 P-N 异质结纳米棒阵列的电荷分离功能
在追求高效光电化学(PEC)水分离的过程中,核壳异质结纳米线阵列光阳极已成为一种有前途的候选材料。本研究成功设计和构建了一种 NiO/ZnO p-n 异质结纳米线阵列,该阵列有利于电荷的分离和传输,有效抑制了光阳极的光腐蚀,并显示出显著的 PEC 水分离性能。具体而言,与纯 ZnO 相比,优化的 NiO/ZnO 核壳光电极在 1.23 V 的电压下,光电转换效率显著提高了 10.5 倍,光电流密度提高了 6.6 倍。此外,对 NiO/ZnO 光阳极的能带结构和 PEC 水分离机理的深入分析阐明了 p-n 异质结在有效分离光诱导载流子方面的优势。这项工作为设计和优化高效太阳能燃料生产的核壳结构提出了一个新概念,有助于可再生能源技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信