Xuewen An, Yujun Hou, Weijia An, Jinshan Hu, Huan Wang, Wenquan Cui
{"title":"Mechanism of TiO2 stabilization and promotion of the synergistic zero-valent Fe‒Cu photocatalysis-persulfate degradation of phenol","authors":"Xuewen An, Yujun Hou, Weijia An, Jinshan Hu, Huan Wang, Wenquan Cui","doi":"10.1016/j.surfin.2024.105365","DOIUrl":null,"url":null,"abstract":"<div><div>Fe-Cu bimetal materials exhibit high catalytic degradation activity with more active sites, faster charge transfer efficiency and synergistic effects on redox pairs. However, it faces the problems of easy compounding and instability. Therefore, we designed and synthesized Fe-Cu/TiO<sub>2</sub> composite catalysts and constructed a synergistic photocatalytic-persulfate degradation system. The phenol (50 ppm) degradation efficiency of 70 % Fe-Cu/TiO<sub>2</sub> was 97.3 % after 30 min of reaction, which was 1.49 and 16.51 times greater than those of Fe-Cu and TiO<sub>2</sub>, respectively. This was attributed to the fact that mixing TiO<sub>2</sub> and Fe-Cu not only effectively promoted Fe-Cu dispersion but also improved the number of active sites and catalytic degradation activity. Moreover, the photogenerated electrons generated by TiO<sub>2</sub> could promote the valence transition between Fe-Cu, slowly releasing Fe<sup>2+</sup> and Cu<sup>0</sup> to realize the continuous activation of PDS and enhance the degradation activity. Quenching experiments and EPR results showed that the catalytic degradation process was dominated by the nonradical <sup>1</sup>O<sub>2</sub>, with SO<sub>4</sub>·<sup>-</sup>, ·OH and ·O<sub>2</sub><sup>-</sup> radicals interacting synergistically. Based on the characterization and experimental results, a synergistic degradation mechanism of Fe-Cu/TiO<sub>2</sub> was proposed, which provides a new approach for pollutant degradation.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105365"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015219","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe-Cu bimetal materials exhibit high catalytic degradation activity with more active sites, faster charge transfer efficiency and synergistic effects on redox pairs. However, it faces the problems of easy compounding and instability. Therefore, we designed and synthesized Fe-Cu/TiO2 composite catalysts and constructed a synergistic photocatalytic-persulfate degradation system. The phenol (50 ppm) degradation efficiency of 70 % Fe-Cu/TiO2 was 97.3 % after 30 min of reaction, which was 1.49 and 16.51 times greater than those of Fe-Cu and TiO2, respectively. This was attributed to the fact that mixing TiO2 and Fe-Cu not only effectively promoted Fe-Cu dispersion but also improved the number of active sites and catalytic degradation activity. Moreover, the photogenerated electrons generated by TiO2 could promote the valence transition between Fe-Cu, slowly releasing Fe2+ and Cu0 to realize the continuous activation of PDS and enhance the degradation activity. Quenching experiments and EPR results showed that the catalytic degradation process was dominated by the nonradical 1O2, with SO4·-, ·OH and ·O2- radicals interacting synergistically. Based on the characterization and experimental results, a synergistic degradation mechanism of Fe-Cu/TiO2 was proposed, which provides a new approach for pollutant degradation.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)