{"title":"Less fuel strategies for space debris removal in Low Earth Orbit","authors":"Yuki Itaya , Yasuhiro Yoshimura , Toshiya Hanada , Tadanori Fukushima","doi":"10.1016/j.jsse.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes less fuel strategies for space debris removal. To mitigate the risk of space debris cost-efficiently, multi-rendezvous missions are under development. On the other hand, multi-rendezvous missions often require changing orbital planes of removal satellites, which requires a huge amount of ΔV. Therefore, this study focuses on exploiting the J<sub>2</sub> perturbation force as an auxiliary force and aims to establish maneuver rules that minimize ΔV consumption while maximizing the benefit of the J<sub>2</sub> perturbation. The J<sub>2</sub> perturbation equation is explored analytically, which clarifies whether the change in the semi-major axis or the inclination dominates the efficiency of the exploitation. A straightforward criterion is extracted which determines the efficient maneuver based on the initial inclination of the satellite.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724001149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes less fuel strategies for space debris removal. To mitigate the risk of space debris cost-efficiently, multi-rendezvous missions are under development. On the other hand, multi-rendezvous missions often require changing orbital planes of removal satellites, which requires a huge amount of ΔV. Therefore, this study focuses on exploiting the J2 perturbation force as an auxiliary force and aims to establish maneuver rules that minimize ΔV consumption while maximizing the benefit of the J2 perturbation. The J2 perturbation equation is explored analytically, which clarifies whether the change in the semi-major axis or the inclination dominates the efficiency of the exploitation. A straightforward criterion is extracted which determines the efficient maneuver based on the initial inclination of the satellite.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.