Wenliang Qiu , Kuan Li , Xin Zhao , Zhaolong Hou , Zhenguo Wang , Junpeng Yu
{"title":"Prototype observation and analysis of static ice pressure on reservoir piers in cold regions","authors":"Wenliang Qiu , Kuan Li , Xin Zhao , Zhaolong Hou , Zhenguo Wang , Junpeng Yu","doi":"10.1016/j.coldregions.2024.104352","DOIUrl":null,"url":null,"abstract":"<div><div>Static ice pressure is an important factor threatening the structural safety of bridges built in cold region reservoirs. Bridge piers will be subjected to high static ice pressure during the conversion of water to ice, which may cause deformation or even failure of piers. To investigate the spatial and temporal distribution of static ice pressure, this study carried out a two-year field observation experiment on the ice sheet of the Xilamulun Reservoir in Inner Monggol, China. A novel ice pressure panel was designed to measure static ice pressure in this work. Meanwhile, the air temperature, ice temperature, and ice thickness were recorded to analyze the influencing factors of static ice pressure. The results show that the new ice pressure panel provided an accurate measurement of the varying ice pressure and its vertical distribution within the ice sheet. The ice thickness growth factor was calculated based on the Freezing Ice Degree Day model, and snowfall was the critical parameter affecting the ice thickness growth factor. The new formulas for calculating the temperature distribution within the ice sheet were presented, in which critical parameters were determined based on measured data. The calculated ice pressures matched well with the observed values, which indicates the validity of the presented formulas. The maximum ice pressure on piers occurred at 1/3 to 1/2 of the ice thickness below the ice surface and gradually moved downward as the ice thickness increased. Moreover, the ice pressure is not only affected by the air temperature but also by the cracking state of the ice sheet, constraints, sunshine time, etc. This study can be used to predict ice sheet growth, ice pressure, and ice temperature distribution and contribute to the ice-resistant design of bridge piers in cold region reservoirs.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002337","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Static ice pressure is an important factor threatening the structural safety of bridges built in cold region reservoirs. Bridge piers will be subjected to high static ice pressure during the conversion of water to ice, which may cause deformation or even failure of piers. To investigate the spatial and temporal distribution of static ice pressure, this study carried out a two-year field observation experiment on the ice sheet of the Xilamulun Reservoir in Inner Monggol, China. A novel ice pressure panel was designed to measure static ice pressure in this work. Meanwhile, the air temperature, ice temperature, and ice thickness were recorded to analyze the influencing factors of static ice pressure. The results show that the new ice pressure panel provided an accurate measurement of the varying ice pressure and its vertical distribution within the ice sheet. The ice thickness growth factor was calculated based on the Freezing Ice Degree Day model, and snowfall was the critical parameter affecting the ice thickness growth factor. The new formulas for calculating the temperature distribution within the ice sheet were presented, in which critical parameters were determined based on measured data. The calculated ice pressures matched well with the observed values, which indicates the validity of the presented formulas. The maximum ice pressure on piers occurred at 1/3 to 1/2 of the ice thickness below the ice surface and gradually moved downward as the ice thickness increased. Moreover, the ice pressure is not only affected by the air temperature but also by the cracking state of the ice sheet, constraints, sunshine time, etc. This study can be used to predict ice sheet growth, ice pressure, and ice temperature distribution and contribute to the ice-resistant design of bridge piers in cold region reservoirs.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.