Zhuangzhuang Chen , Bin Pu , Lei Zhao , Jie He , Pengchen Liang
{"title":"Divide and augment: Supervised domain adaptation via sample-wise feature fusion","authors":"Zhuangzhuang Chen , Bin Pu , Lei Zhao , Jie He , Pengchen Liang","doi":"10.1016/j.inffus.2024.102757","DOIUrl":null,"url":null,"abstract":"<div><div>The training of deep models relies on appropriate regularization from a copious amount of labeled data. And yet, obtaining a large and well-annotated dataset is costly. Thus, supervised domain adaptation (SDA) becomes attractive, especially when it aims to regularize these networks for a data-scarce target domain by exploiting an available data-rich source domain. Different from previous methods focusing on an cumbersome adversarial learning manner, we assume that a source or target sample in the feature space can be regarded as a combination of (1) domain-oriented features (i.e., those reflecting the difference among domains) and (2) class-specific features (i.e., those inherently defining a specific class). By exploiting this, we present Divide and Augment (DivAug), a feature fusion-based data augmentation framework that performs target domain augmentation by transforming source samples into the target domain in an energy-efficient manner. Specifically, with a novel <em>semantic inconsistency loss</em> based on a multi-task ensemble learning scheme, DivAug enforces two encoders to learn the decomposed domain-oriented and class-specific features, respectively. Furthermore, we propose a simple sample-wise feature fusion rule that transforms source samples into target domain by combining class-specific features from a source sample and domain-oriented features from a target sample. Extensive experiments demonstrate that our method outperforms the current state-of-the-art methods across various datasets in SDA settings.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102757"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005359","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The training of deep models relies on appropriate regularization from a copious amount of labeled data. And yet, obtaining a large and well-annotated dataset is costly. Thus, supervised domain adaptation (SDA) becomes attractive, especially when it aims to regularize these networks for a data-scarce target domain by exploiting an available data-rich source domain. Different from previous methods focusing on an cumbersome adversarial learning manner, we assume that a source or target sample in the feature space can be regarded as a combination of (1) domain-oriented features (i.e., those reflecting the difference among domains) and (2) class-specific features (i.e., those inherently defining a specific class). By exploiting this, we present Divide and Augment (DivAug), a feature fusion-based data augmentation framework that performs target domain augmentation by transforming source samples into the target domain in an energy-efficient manner. Specifically, with a novel semantic inconsistency loss based on a multi-task ensemble learning scheme, DivAug enforces two encoders to learn the decomposed domain-oriented and class-specific features, respectively. Furthermore, we propose a simple sample-wise feature fusion rule that transforms source samples into target domain by combining class-specific features from a source sample and domain-oriented features from a target sample. Extensive experiments demonstrate that our method outperforms the current state-of-the-art methods across various datasets in SDA settings.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.