Meijie Ding , Zhiqiang Wei , Dexue Liu , Wenhua Zhao , Qiang Lu , Zhiming Li , Qingsong Yu , Chenggong Lu , Hua Yang
{"title":"Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting","authors":"Meijie Ding , Zhiqiang Wei , Dexue Liu , Wenhua Zhao , Qiang Lu , Zhiming Li , Qingsong Yu , Chenggong Lu , Hua Yang","doi":"10.1016/j.jechem.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting. It is proposed that a promising strategy effectively regulates the electronic structure of the d‐orbitals of CoP using cerium doping in this paper, thus significantly improving the intrinsic property and conductivity of CoP for water splitting. As a result, the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), overpotentials of about 152 mV for HER at 10 mA cm<sup>−2</sup> and about 352 mV for OER at 50 mA cm<sup>−2</sup>, and especially it shows outstanding long-term stability. Besides, an alkaline electrolyzer, using Ce<sub>0.04</sub>Co<sub>0.96</sub>P electrocatalyst as both the anode and cathode, delivers a cell voltage value of 1.55 V at the current density of 10 mA cm<sup>−2</sup>. The calculation results of the density functional theory (DFT) demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity, and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O* intermediates (CoOOH), which exhibits an excellent electrocatalytic performance. This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 598-607"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400706X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting. It is proposed that a promising strategy effectively regulates the electronic structure of the d‐orbitals of CoP using cerium doping in this paper, thus significantly improving the intrinsic property and conductivity of CoP for water splitting. As a result, the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), overpotentials of about 152 mV for HER at 10 mA cm−2 and about 352 mV for OER at 50 mA cm−2, and especially it shows outstanding long-term stability. Besides, an alkaline electrolyzer, using Ce0.04Co0.96P electrocatalyst as both the anode and cathode, delivers a cell voltage value of 1.55 V at the current density of 10 mA cm−2. The calculation results of the density functional theory (DFT) demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity, and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O* intermediates (CoOOH), which exhibits an excellent electrocatalytic performance. This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy