Effect of antioxidant structure on bromobutyl rubber composites' processability and age resistance

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED
{"title":"Effect of antioxidant structure on bromobutyl rubber composites' processability and age resistance","authors":"","doi":"10.1016/j.reactfunctpolym.2024.106082","DOIUrl":null,"url":null,"abstract":"<div><div>Bromobutyl rubber has numerous applications in industries such as tires, sealing capsules, and aerospace, so enhancing its aging resistance is a critical issue. However, the addition of amine antioxidants to Bromobutyl rubber results in the occurrence of unique storage hardening and storage scorching phenomenon, which lead to the deterioration of the rubber's properties. To examine the impact of various types of amine antioxidants on the storage stability and aging resistance of Bromobutyl rubber, we conducted comparative experiments using five types of amine antioxidants and one phenolic antioxidant. The purpose was to investigate the effect of amine antioxidants on the storage stability and overall performance of Bromobutyl rubber. The results indicate that the inclusion of <em>p</em>-phenylenediamine antioxidants (4020, 4010NA) greatly facilitates the occurrence of storage hardening and storage scorching phenomenon in Bromobutyl rubber, leading to a deterioration in rubber performance. Therefore, it is advisable to refrain from using high-activity <em>p</em>-phenylenediamine antioxidants when working with Bromobutyl rubber.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bromobutyl rubber has numerous applications in industries such as tires, sealing capsules, and aerospace, so enhancing its aging resistance is a critical issue. However, the addition of amine antioxidants to Bromobutyl rubber results in the occurrence of unique storage hardening and storage scorching phenomenon, which lead to the deterioration of the rubber's properties. To examine the impact of various types of amine antioxidants on the storage stability and aging resistance of Bromobutyl rubber, we conducted comparative experiments using five types of amine antioxidants and one phenolic antioxidant. The purpose was to investigate the effect of amine antioxidants on the storage stability and overall performance of Bromobutyl rubber. The results indicate that the inclusion of p-phenylenediamine antioxidants (4020, 4010NA) greatly facilitates the occurrence of storage hardening and storage scorching phenomenon in Bromobutyl rubber, leading to a deterioration in rubber performance. Therefore, it is advisable to refrain from using high-activity p-phenylenediamine antioxidants when working with Bromobutyl rubber.
抗氧化剂结构对溴化丁基橡胶复合材料加工性和耐老化性的影响
溴化丁基橡胶在轮胎、密封胶囊和航空航天等行业应用广泛,因此提高其耐老化性是一个关键问题。然而,在溴化丁基橡胶中添加胺类防老剂会导致出现独特的储存硬化和储存焦烧现象,从而导致橡胶性能恶化。为了研究各种类型的胺类防老剂对溴化丁基橡胶贮存稳定性和耐老化性的影响,我们使用五种胺类防老剂和一种酚类防老剂进行了对比实验。目的是研究胺类抗氧化剂对溴化丁基橡胶储存稳定性和综合性能的影响。结果表明,加入对苯二胺防老剂(4020、4010NA)会极大地促进溴化丁基橡胶发生贮存硬化和贮存焦烧现象,导致橡胶性能下降。因此,在使用溴化丁基橡胶时,建议避免使用高活性对苯二胺防老剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信