Sulfur doping and oxygen vacancy in In2O3 nanotube co-regulate intermediates of CO2 electroreduction for efficient HCOOH production and rechargeable Zn-CO2 battery
{"title":"Sulfur doping and oxygen vacancy in In2O3 nanotube co-regulate intermediates of CO2 electroreduction for efficient HCOOH production and rechargeable Zn-CO2 battery","authors":"Yu Li, Zhengrong Xu, Quanxin Guo, Qin Li, Rui Liu","doi":"10.1016/j.jechem.2024.09.057","DOIUrl":null,"url":null,"abstract":"<div><div>By manipulating the distribution of surface electrons, defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Herein, we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping (V<sub>o</sub>-S<sub>x</sub>-In<sub>2</sub>O<sub>3</sub>) for improved CO<sub>2</sub>-to-HCOOH electroreduction and Zn-CO<sub>2</sub> battery. The componential synergy significantly reduces the *OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for *HCOOH desorption. As a result, the CO<sub>2</sub>RR performance of V<sub>o</sub>-S<sub>x</sub>-In<sub>2</sub>O<sub>3</sub> outperforms Pure-In<sub>2</sub>O<sub>3</sub> and V<sub>o</sub>-In<sub>2</sub>O<sub>3</sub>, where V<sub>o</sub>-S<sub>53</sub>-In<sub>2</sub>O<sub>3</sub> exhibits a maximal HCOOH Faradaic efficiency of 92.4% at −1.2 V <em>vs</em>. reversible hydrogen electrode (RHE) in H-cell and above 92% over a wide window potential with high current density (119.1 mA cm<sup>−2</sup> at −1.1 V <em>vs.</em> RHE) in flow cell. Furthermore, the rechargeable Zn-CO<sub>2</sub> battery utilizing V<sub>o</sub>-S<sub>53</sub>-In<sub>2</sub>O<sub>3</sub> as cathode shows a high power density of 2.29 mW cm<sup>−2</sup> and a long-term stability during charge–discharge cycles. This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO<sub>2</sub>RR.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 474-484"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400682X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
By manipulating the distribution of surface electrons, defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO2 reduction reaction (CO2RR). Herein, we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping (Vo-Sx-In2O3) for improved CO2-to-HCOOH electroreduction and Zn-CO2 battery. The componential synergy significantly reduces the *OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for *HCOOH desorption. As a result, the CO2RR performance of Vo-Sx-In2O3 outperforms Pure-In2O3 and Vo-In2O3, where Vo-S53-In2O3 exhibits a maximal HCOOH Faradaic efficiency of 92.4% at −1.2 V vs. reversible hydrogen electrode (RHE) in H-cell and above 92% over a wide window potential with high current density (119.1 mA cm−2 at −1.1 V vs. RHE) in flow cell. Furthermore, the rechargeable Zn-CO2 battery utilizing Vo-S53-In2O3 as cathode shows a high power density of 2.29 mW cm−2 and a long-term stability during charge–discharge cycles. This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO2RR.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy