{"title":"A review of crystal defect-induced element segregation in multi-component alloy steels","authors":"Xinyuan Zhang , Dexin Zhu , Chaolei Zhang , Xiaoye Zhou , Hong-Hui Wu , Feiyang Wang , Shuize Wang , Guilin Wu , Junheng Gao , Hiatao Zhao , Jiaming Zhu , Xinping Mao","doi":"10.1016/j.pnsc.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><div>In multi-component alloy steels, the interplay of chemical interactions among elements and variations in atomic radius often results in element segregation towards defects, markedly influencing the macroscopic material properties. Despite many recent studies reporting defect-dependent element segregation in steel, a comprehensive overview is still lacking. In this work, element segregation at various defects and their influence on steel performance are examined. It specifically delves into the influences of element segregation at dislocation, grain boundary, phase boundary, and precipitate phase interface on the mechanical performance of steel. For each type of crystal defect-induced element segregation, this review discusses the crystallographic structure, segregated microstructure, element segregation distribution, and the corresponding influence of element segregation on the mechanical performance of steel. Finally, this review extensively explores the scientific issues and challenges of element segregation research in steel. It provides valuable insights into the behavior of element segregation in steel and inspires new research directions in other multi-component alloys.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 840-858"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100200712400162X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In multi-component alloy steels, the interplay of chemical interactions among elements and variations in atomic radius often results in element segregation towards defects, markedly influencing the macroscopic material properties. Despite many recent studies reporting defect-dependent element segregation in steel, a comprehensive overview is still lacking. In this work, element segregation at various defects and their influence on steel performance are examined. It specifically delves into the influences of element segregation at dislocation, grain boundary, phase boundary, and precipitate phase interface on the mechanical performance of steel. For each type of crystal defect-induced element segregation, this review discusses the crystallographic structure, segregated microstructure, element segregation distribution, and the corresponding influence of element segregation on the mechanical performance of steel. Finally, this review extensively explores the scientific issues and challenges of element segregation research in steel. It provides valuable insights into the behavior of element segregation in steel and inspires new research directions in other multi-component alloys.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.