Ziming Wang , Hanbo Wang , Dongyu Pei , Sheng Wan , Yan Wang , Mingrui Yu , Haiyan Lu
{"title":"Hydrothermal-deposition synthesis of MnO2/MnS nanorods as high-performance asymmetric supercapacitor positive electrode materials","authors":"Ziming Wang , Hanbo Wang , Dongyu Pei , Sheng Wan , Yan Wang , Mingrui Yu , Haiyan Lu","doi":"10.1016/j.pnsc.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructuring has shown promise in enhancing the performance of MnO<sub>2</sub> for energy storage in supercapacitors, highlighting its technological significance. This study introduces an innovative synthesis method, employing hydrothermal and constant-pressure deposition techniques, to produce nanostructured MnO<sub>2</sub>/MnS rod electrodes on nickel foam. The roded heterostructure enhances specific surface area, conductivity, and symbiotic effect between MnO<sub>2</sub> and MnS. With optimized material and structural advantages, the electrode reaches a capacitance of 977.6 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, demonstrating extended cycling lifespan. Using MnO<sub>2</sub>/MnS-5h rods as the positive electrode and activated carbon as the negative electrode, the supercapacitor achieves an energy density of 122.23 Wh kg<sup>−1</sup> at 898.75 W kg<sup>−1</sup>. Notably, it maintains 91.55 % capacity retention after 5000 cycles at 10 A g<sup>−1</sup>, indicating outstanding cycling stability. This research presents a promising solution for efficient energy storage, emphasizing the potential application of the developed MnO<sub>2</sub>/MnS based supercapacitor in high-performance energy storage systems.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 1057-1065"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001734","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructuring has shown promise in enhancing the performance of MnO2 for energy storage in supercapacitors, highlighting its technological significance. This study introduces an innovative synthesis method, employing hydrothermal and constant-pressure deposition techniques, to produce nanostructured MnO2/MnS rod electrodes on nickel foam. The roded heterostructure enhances specific surface area, conductivity, and symbiotic effect between MnO2 and MnS. With optimized material and structural advantages, the electrode reaches a capacitance of 977.6 F g−1 at 1 A g−1, demonstrating extended cycling lifespan. Using MnO2/MnS-5h rods as the positive electrode and activated carbon as the negative electrode, the supercapacitor achieves an energy density of 122.23 Wh kg−1 at 898.75 W kg−1. Notably, it maintains 91.55 % capacity retention after 5000 cycles at 10 A g−1, indicating outstanding cycling stability. This research presents a promising solution for efficient energy storage, emphasizing the potential application of the developed MnO2/MnS based supercapacitor in high-performance energy storage systems.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.