{"title":"Adaptive control for refrigeration via online identification","authors":"Xiaorui Lu, Guanru Li, Chengbin Zhang","doi":"10.1016/j.ijrefrig.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Vapor compression refrigeration systems (VCRS) occupy a crucial position in modern society and in the field of thermal sciences. However, the operation of VCRS is subjected to both external disturbances (dynamic-changing environment) and inherent system characteristics (coupling or nonlinear features), leading to issues like reduced refrigeration efficiency and significant fluctuations in cooling capacity. To address these challenges and enhance the adaptability of VCRS in dynamically changing environments, this study establishes a dynamic simulation model for VCRS based on the Switched Moving-Boundary method. The impact of external environmental disturbances on refrigeration performance is investigated, and continuous online identification methods are employed to elucidate its internal coupling characteristics and nonlinear features. The adaptive temperature control method is introduced, benefiting from the developed recursive least squares method with a forgetting factor for online identification, achieving precise model identification which facilities the real-time parameters tuning of adaptive controller. The results indicate that the hybrid paradigm of online identification and adaptive control algorithm not only effectively handles various disturbances but also reduces overshoot and IAE by 2–3 orders of magnitude compared to traditional PID controllers. Adaptive PID control maintains overshoot in the 10<sup>–4</sup> order of magnitude and IAE in the 10<sup>–5</sup> order of magnitude.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 777-787"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003438","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vapor compression refrigeration systems (VCRS) occupy a crucial position in modern society and in the field of thermal sciences. However, the operation of VCRS is subjected to both external disturbances (dynamic-changing environment) and inherent system characteristics (coupling or nonlinear features), leading to issues like reduced refrigeration efficiency and significant fluctuations in cooling capacity. To address these challenges and enhance the adaptability of VCRS in dynamically changing environments, this study establishes a dynamic simulation model for VCRS based on the Switched Moving-Boundary method. The impact of external environmental disturbances on refrigeration performance is investigated, and continuous online identification methods are employed to elucidate its internal coupling characteristics and nonlinear features. The adaptive temperature control method is introduced, benefiting from the developed recursive least squares method with a forgetting factor for online identification, achieving precise model identification which facilities the real-time parameters tuning of adaptive controller. The results indicate that the hybrid paradigm of online identification and adaptive control algorithm not only effectively handles various disturbances but also reduces overshoot and IAE by 2–3 orders of magnitude compared to traditional PID controllers. Adaptive PID control maintains overshoot in the 10–4 order of magnitude and IAE in the 10–5 order of magnitude.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.