Runa D. Hoenger Ramazanova, Theodoros I. Roumeliotis*, James C. Wright and Jyoti S. Choudhary*,
{"title":"PhoXplex: Combining Phospho-enrichable Cross-Linking with Isobaric Labeling for Quantitative Proteome-Wide Mapping of Protein Interfaces","authors":"Runa D. Hoenger Ramazanova, Theodoros I. Roumeliotis*, James C. Wright and Jyoti S. Choudhary*, ","doi":"10.1021/acs.jproteome.4c0056710.1021/acs.jproteome.4c00567","DOIUrl":null,"url":null,"abstract":"<p >Integrating cross-linking mass spectrometry (XL-MS) into structural biology workflows provides valuable information about the spatial arrangement of amino acid stretches, which can guide elucidation of protein assembly architecture. Additionally, the combination of XL-MS with peptide quantitation techniques is a powerful approach to delineate protein interface dynamics across diverse conditions. While XL-MS is increasingly effective with isolated proteins or small complexes, its application to whole-cell samples poses technical challenges related to analysis depth and throughput. The use of enrichable cross-linkers has greatly improved the detectability of protein interfaces in a proteome-wide scale, facilitating global protein–protein interaction mapping. Therefore, bringing together enrichable cross-linking and multiplexed peptide quantification is an appealing approach to enable comparative characterization of structural attributes of proteins and protein interactions. Here, we combined phospho-enrichable cross-linking with TMT labeling to develop a streamline workflow (PhoXplex) for the detection of differential structural features across a panel of cell lines in a global scale. We achieved deep coverage with quantification of over 9000 cross-links and long loop-links in total including potentially novel interactions. Overlaying AlphaFold predictions and disorder protein annotations enables exploration of the quantitative cross-linking data set, to reveal possible associations between mutations and protein structures. Lastly, we discuss current shortcomings and perspectives for deep whole-cell profiling of protein interfaces at large-scale.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00567","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00567","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating cross-linking mass spectrometry (XL-MS) into structural biology workflows provides valuable information about the spatial arrangement of amino acid stretches, which can guide elucidation of protein assembly architecture. Additionally, the combination of XL-MS with peptide quantitation techniques is a powerful approach to delineate protein interface dynamics across diverse conditions. While XL-MS is increasingly effective with isolated proteins or small complexes, its application to whole-cell samples poses technical challenges related to analysis depth and throughput. The use of enrichable cross-linkers has greatly improved the detectability of protein interfaces in a proteome-wide scale, facilitating global protein–protein interaction mapping. Therefore, bringing together enrichable cross-linking and multiplexed peptide quantification is an appealing approach to enable comparative characterization of structural attributes of proteins and protein interactions. Here, we combined phospho-enrichable cross-linking with TMT labeling to develop a streamline workflow (PhoXplex) for the detection of differential structural features across a panel of cell lines in a global scale. We achieved deep coverage with quantification of over 9000 cross-links and long loop-links in total including potentially novel interactions. Overlaying AlphaFold predictions and disorder protein annotations enables exploration of the quantitative cross-linking data set, to reveal possible associations between mutations and protein structures. Lastly, we discuss current shortcomings and perspectives for deep whole-cell profiling of protein interfaces at large-scale.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".