Materials of Value-Added Electrolysis for Green Hydrogen Production

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Endalkachew Asefa Moges, Keseven Lakshmanan, Chia-Yu Chang, Wei-Sheng Liao, Fikiru Temesgen Angerasa, Woldesenbet Bafe Dilebo, Habib Gemechu Edao, Kirubel Teshome Tadele, Dessalew Dagnew Alemayehu, Baru Debtera Bejena, Chemeda Barasa Guta, Chun-Chi Chang, Meng-Che Tsai, Wei-Nien Su* and Bing Joe Hwang*, 
{"title":"Materials of Value-Added Electrolysis for Green Hydrogen Production","authors":"Endalkachew Asefa Moges,&nbsp;Keseven Lakshmanan,&nbsp;Chia-Yu Chang,&nbsp;Wei-Sheng Liao,&nbsp;Fikiru Temesgen Angerasa,&nbsp;Woldesenbet Bafe Dilebo,&nbsp;Habib Gemechu Edao,&nbsp;Kirubel Teshome Tadele,&nbsp;Dessalew Dagnew Alemayehu,&nbsp;Baru Debtera Bejena,&nbsp;Chemeda Barasa Guta,&nbsp;Chun-Chi Chang,&nbsp;Meng-Che Tsai,&nbsp;Wei-Nien Su* and Bing Joe Hwang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0117310.1021/acsmaterialslett.4c01173","DOIUrl":null,"url":null,"abstract":"<p >The increasing energy consumption and resulting environmental pollution present a major challenge for society. This has led to a global demand for ultrapure energy and valuable chemical products. Therefore, a sustainable and ecofriendly approach to green energy production is essential. Recently, combining anodic oxidation reactions with hydrogen evolution reactions has shown potential in transforming low-grade molecules such as alcohols (such as ethanol, methanol, ethylene glycol, and glycerol), iodide, and biomass-derived compounds. This method could replace the sluggish oxygen evolution reaction in sustainable electrochemical energy systems. This review summarizes electro-oxidation reactions that produce green hydrogen with low electricity consumption and valuable chemicals from inexpensive small-molecule oxidants. It also explores rational design approaches for catalysts, including late transition metals on carbon-based supports, metal oxides, surface engineering, and interface engineering. Finally, the current challenges and future perspectives for developing material catalysts for value-added electrolysis technologies (power-to-green hydrogen production).</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing energy consumption and resulting environmental pollution present a major challenge for society. This has led to a global demand for ultrapure energy and valuable chemical products. Therefore, a sustainable and ecofriendly approach to green energy production is essential. Recently, combining anodic oxidation reactions with hydrogen evolution reactions has shown potential in transforming low-grade molecules such as alcohols (such as ethanol, methanol, ethylene glycol, and glycerol), iodide, and biomass-derived compounds. This method could replace the sluggish oxygen evolution reaction in sustainable electrochemical energy systems. This review summarizes electro-oxidation reactions that produce green hydrogen with low electricity consumption and valuable chemicals from inexpensive small-molecule oxidants. It also explores rational design approaches for catalysts, including late transition metals on carbon-based supports, metal oxides, surface engineering, and interface engineering. Finally, the current challenges and future perspectives for developing material catalysts for value-added electrolysis technologies (power-to-green hydrogen production).

用于绿色制氢的增值电解材料
日益增长的能源消耗和由此造成的环境污染给社会带来了重大挑战。这导致了全球对超纯能源和有价值化学产品的需求。因此,必须采用可持续和生态友好的方法来生产绿色能源。最近,将阳极氧化反应与氢进化反应相结合,在转化低品位分子(如乙醇、甲醇、乙二醇和甘油)、碘化物和生物质衍生化合物方面显示出了潜力。这种方法可以取代可持续电化学能源系统中缓慢的氧进化反应。本综述概述了利用廉价的小分子氧化剂生产绿色氢气的电氧化反应,该反应耗电量低,并能产生有价值的化学物质。综述还探讨了催化剂的合理设计方法,包括碳基载体上的后期过渡金属、金属氧化物、表面工程和界面工程。最后,介绍了为增值电解技术(从电力到绿色制氢)开发材料催化剂的当前挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信