Attiya A. Abbas, Wildan Hanif, Isobel Steer, Erol Hasan, Oliver Teenan, Mo Akhavani, Khaled Mutabagani, Benjamin D. Almquist, Claire A. Higgins and Dana Alsulaiman*,
{"title":"ProT-Patch: A Smart Coated Polymeric Microneedle Enables Noninvasive Protein Delivery and Reprogramming of Epidermal Skin Identity","authors":"Attiya A. Abbas, Wildan Hanif, Isobel Steer, Erol Hasan, Oliver Teenan, Mo Akhavani, Khaled Mutabagani, Benjamin D. Almquist, Claire A. Higgins and Dana Alsulaiman*, ","doi":"10.1021/acsmaterialslett.4c0160910.1021/acsmaterialslett.4c01609","DOIUrl":null,"url":null,"abstract":"<p >Microneedles have emerged as transformative devices for noninvasive drug delivery through skin; however, reported platforms suffer poor skin penetration, dosage inaccuracy, and/or complex fabrication. Herein, we develop and validate a smart pH-responsive polymeric microneedle (proT-patch) for efficient drug delivery to the basal epidermal layer of the skin. The microneedle base offers high stiffness, while a variable needle height design eludes the “bed of nails” effect. With its stimuli-responsiveness, the microneedle coating enables drug release under specific pH conditions, enhancing dosage accuracy and minimizing biowaste. The performance of proT-patch is validated using <i>ex vivo</i> human skin by delivering Wnt5a, which switches on Keratin-9 expression, and is not expressed in nonplantar skin. Administering Wnt5a-loaded proT-patch to skin enhanced Keratin-9 expression in basal epidermal keratinocytes compared to topical and unloaded controls. With its facile fabrication, versatility, and exceptional performance, proT-patch shows immense potential as a next-generation, noninvasive tool for therapeutics, cosmetics, and vaccine delivery.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"4997–5005 4997–5005"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01609","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microneedles have emerged as transformative devices for noninvasive drug delivery through skin; however, reported platforms suffer poor skin penetration, dosage inaccuracy, and/or complex fabrication. Herein, we develop and validate a smart pH-responsive polymeric microneedle (proT-patch) for efficient drug delivery to the basal epidermal layer of the skin. The microneedle base offers high stiffness, while a variable needle height design eludes the “bed of nails” effect. With its stimuli-responsiveness, the microneedle coating enables drug release under specific pH conditions, enhancing dosage accuracy and minimizing biowaste. The performance of proT-patch is validated using ex vivo human skin by delivering Wnt5a, which switches on Keratin-9 expression, and is not expressed in nonplantar skin. Administering Wnt5a-loaded proT-patch to skin enhanced Keratin-9 expression in basal epidermal keratinocytes compared to topical and unloaded controls. With its facile fabrication, versatility, and exceptional performance, proT-patch shows immense potential as a next-generation, noninvasive tool for therapeutics, cosmetics, and vaccine delivery.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.