Introducing Molecular Hypernetworks for Discovery in Multidimensional Metabolomics Data

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sean M. Colby, Madelyn R. Shapiro, Andy Lin, Aivett Bilbao, Corey D. Broeckling, Emilie Purvine and Cliff A. Joslyn*, 
{"title":"Introducing Molecular Hypernetworks for Discovery in Multidimensional Metabolomics Data","authors":"Sean M. Colby,&nbsp;Madelyn R. Shapiro,&nbsp;Andy Lin,&nbsp;Aivett Bilbao,&nbsp;Corey D. Broeckling,&nbsp;Emilie Purvine and Cliff A. Joslyn*,&nbsp;","doi":"10.1021/acs.jproteome.3c0063410.1021/acs.jproteome.3c00634","DOIUrl":null,"url":null,"abstract":"<p >Orthogonal separations of data from high-resolution mass spectrometry can provide insight into sample composition and address challenges of complete annotation of molecules in untargeted metabolomics. “Molecular networks” (MNs), as used in the Global Natural Products Social Molecular Networking platform, are a prominent strategy for exploring and visualizing molecular relationships and improving annotation. MNs are mathematical graphs showing the relationships between measured multidimensional data features. MNs also show promise for using network science algorithms to automatically identify targets for annotation candidates and to dereplicate features associated with a single molecular identity. This paper introduces “molecular hypernetworks” (MHNs) as more complex MN models able to natively represent multiway relationships among observations. Compared to MNs, MHNs can more parsimoniously represent the inherent complexity present among groups of observations, initially supporting improved exploratory data analysis and visualization. MHNs also promise to increase confidence in annotation propagation, for both human and analytical processing. We first illustrate MHNs with simple examples, and build them from liquid chromatography- and ion mobility spectrometry-separated MS data. We then describe a method to construct MHNs directly from existing MNs as their “clique reconstructions”, demonstrating their utility by comparing examples of previously published graph-based MNs to their respective MHNs.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal separations of data from high-resolution mass spectrometry can provide insight into sample composition and address challenges of complete annotation of molecules in untargeted metabolomics. “Molecular networks” (MNs), as used in the Global Natural Products Social Molecular Networking platform, are a prominent strategy for exploring and visualizing molecular relationships and improving annotation. MNs are mathematical graphs showing the relationships between measured multidimensional data features. MNs also show promise for using network science algorithms to automatically identify targets for annotation candidates and to dereplicate features associated with a single molecular identity. This paper introduces “molecular hypernetworks” (MHNs) as more complex MN models able to natively represent multiway relationships among observations. Compared to MNs, MHNs can more parsimoniously represent the inherent complexity present among groups of observations, initially supporting improved exploratory data analysis and visualization. MHNs also promise to increase confidence in annotation propagation, for both human and analytical processing. We first illustrate MHNs with simple examples, and build them from liquid chromatography- and ion mobility spectrometry-separated MS data. We then describe a method to construct MHNs directly from existing MNs as their “clique reconstructions”, demonstrating their utility by comparing examples of previously published graph-based MNs to their respective MHNs.

Abstract Image

引入分子超网络以发现多维代谢组学数据
对来自高分辨率质谱的数据进行正交分离,可以深入了解样品组成,并解决在非靶向代谢组学中对分子进行完整注释所面临的挑战。全球天然产品社会分子网络平台中使用的 "分子网络"(MNs)是探索和可视化分子关系以及改进注释的一个重要策略。分子网络是显示测量的多维数据特征之间关系的数学图表。分子超网络还显示了利用网络科学算法自动识别注释候选目标和消除与单一分子特征相关的特征的前景。本文介绍了 "分子超网络"(MHN),它是一种更复杂的分子网络模型,能够原生表示观测数据之间的多向关系。与 MNs 相比,MHNs 可以更简洁地表示观察组之间存在的内在复杂性,初步支持改进的探索性数据分析和可视化。MHN 还有望提高注释传播的可信度,无论是对于人工处理还是分析处理都是如此。我们首先用简单的例子来说明 MHN,并从液相色谱和离子迁移谱分离的 MS 数据中构建 MHN。然后,我们介绍了一种直接从现有的 MNs(作为其 "clique reconstructions")构建 MHNs 的方法,并通过比较以前发表的基于图的 MNs 和它们各自的 MHNs 来证明它们的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信