Existence and stability criteria for global synchrony and for synchrony in two alternating clusters of pulse-coupled oscillators updated to include conduction delays
{"title":"Existence and stability criteria for global synchrony and for synchrony in two alternating clusters of pulse-coupled oscillators updated to include conduction delays","authors":"Ananth Vedururu Srinivas, Carmen C. Canavier","doi":"10.1016/j.mbs.2024.109335","DOIUrl":null,"url":null,"abstract":"<div><div>Phase Response Curves (PRCs) have been useful in determining and analyzing various phase-locking modes in networks of oscillators under pulse-coupling assumptions, as reviewed in Mathematical Biosciences, 226:77–96, 2010. Here, we update that review to include progress since 2010 on pulse coupled oscillators with conduction delays. We then present original results that extend the derivation of the criteria for stability of global synchrony in networks of pulse-coupled oscillators to include conduction delays. We also incorporate conduction delays to extend previous studies that showed how an alternating firing pattern between two synchronized clusters could enforce within-cluster synchrony, even for clusters unable to synchronize themselves in isolation. To obtain these results, we used self-connected neurons to represent clusters. These results greatly extend the applicability of the stability analyses to networks of pulse-coupled oscillators since conduction delays are ubiquitous and strongly impact the stability of synchrony. Although these analyses only strictly apply to identical oscillators with identical connections to other oscillators, the principles are general and suggest how to promote or impede synchrony in physiological networks of neurons, for example. Heterogeneity can be interpreted as a form of frozen noise, and approximate synchrony can be sustained despite heterogeneity. The pulse-coupled oscillator model can not only be used to describe biological neuronal networks but also cardiac pacemakers, lasers, fireflies, artificial neural networks, social self-organization, and wireless sensor networks.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"378 ","pages":"Article 109335"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001950","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phase Response Curves (PRCs) have been useful in determining and analyzing various phase-locking modes in networks of oscillators under pulse-coupling assumptions, as reviewed in Mathematical Biosciences, 226:77–96, 2010. Here, we update that review to include progress since 2010 on pulse coupled oscillators with conduction delays. We then present original results that extend the derivation of the criteria for stability of global synchrony in networks of pulse-coupled oscillators to include conduction delays. We also incorporate conduction delays to extend previous studies that showed how an alternating firing pattern between two synchronized clusters could enforce within-cluster synchrony, even for clusters unable to synchronize themselves in isolation. To obtain these results, we used self-connected neurons to represent clusters. These results greatly extend the applicability of the stability analyses to networks of pulse-coupled oscillators since conduction delays are ubiquitous and strongly impact the stability of synchrony. Although these analyses only strictly apply to identical oscillators with identical connections to other oscillators, the principles are general and suggest how to promote or impede synchrony in physiological networks of neurons, for example. Heterogeneity can be interpreted as a form of frozen noise, and approximate synchrony can be sustained despite heterogeneity. The pulse-coupled oscillator model can not only be used to describe biological neuronal networks but also cardiac pacemakers, lasers, fireflies, artificial neural networks, social self-organization, and wireless sensor networks.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.