Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean.

2区 医学 Q1 Medicine
Advances in Virus Research Pub Date : 2022-01-01 Epub Date: 2022-10-07 DOI:10.1016/bs.aivir.2022.09.001
Hannah Locke, Kay D Bidle, Kimberlee Thamatrakoln, Christopher T Johns, Juan A Bonachela, Barbra D Ferrell, K Eric Wommack
{"title":"Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean.","authors":"Hannah Locke, Kay D Bidle, Kimberlee Thamatrakoln, Christopher T Johns, Juan A Bonachela, Barbra D Ferrell, K Eric Wommack","doi":"10.1016/bs.aivir.2022.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"114 ","pages":"67-146"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virus Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.aivir.2022.09.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.

海洋病毒与气候变化:病毒浮游生物、碳循环和我们未来的海洋。
海洋病毒与微生物之间的相互作用是海洋碳循环的重要组成部分。病毒-宿主相互作用的影响范围很广,从通过细胞裂解(即病毒分流)将微生物生物量碳转移到更高营养级的短期破坏,到通过加速生物泵(即病毒穿梭)将微生物生物量碳重新分配到深海的长期影响。海洋的生物地球化学背景--物理、化学和生物景观--影响着病毒-宿主相互作用和颗粒形成的可能性,以及碳的归宿和流动。随着气候变化通过温度、环流、分层和酸化的大规模变化重塑海洋景观,病毒介导的碳通量也可能随之变化。病毒如何、在何处以及何时介导微生物生物质碳的循环或储存,其变化的方向性和幅度在很大程度上是未知的。将从实验模型和野外系统中获得的病毒感染动力学数据、粒子运动微物理学和海洋生物地球化学全球观测数据整合到改进的生态系统模型中,将使病毒海洋学家能够更好地预测病毒在未来海洋碳循环中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信