Dark-field radiography for the detection of bone microstructure changes in osteoporotic human lumbar spine specimens.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jon F Rischewski, Florian T Gassert, Theresa Urban, Johannes Hammel, Alexander Kufner, Christian Braun, Maximilian Lochschmidt, Marcus R Makowski, Daniela Pfeiffer, Alexandra S Gersing, Franz Pfeiffer
{"title":"Dark-field radiography for the detection of bone microstructure changes in osteoporotic human lumbar spine specimens.","authors":"Jon F Rischewski, Florian T Gassert, Theresa Urban, Johannes Hammel, Alexander Kufner, Christian Braun, Maximilian Lochschmidt, Marcus R Makowski, Daniela Pfeiffer, Alexandra S Gersing, Franz Pfeiffer","doi":"10.1186/s41747-024-00524-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dark-field radiography imaging exploits the wave character of x-rays to measure small-angle scattering on material interfaces, providing structural information with low radiation exposure. We explored the potential of dark-field imaging of bone microstructure to improve the assessment of bone strength in osteoporosis.</p><p><strong>Methods: </strong>We prospectively examined 14 osteoporotic/osteopenic and 21 non-osteoporotic/osteopenic human cadaveric vertebrae (L2-L4) with a clinical dark-field radiography system, micro-computed tomography (CT), and spectral CT. Dark-field images were obtained in both vertical and horizontal sample positions. Bone microstructural parameters (trabecular number, Tb.N; trabecular thickness, Tb.Th; bone volume fraction, BV/TV; degree of anisotropy, DA) were measured using standard ex vivo micro-CT, while hydroxyapatite density was measured using spectral CT. Correlations were assessed using Spearman rank correlation coefficients.</p><p><strong>Results: </strong>The measured dark-field signal was lower in osteoporotic/osteopenic vertebrae (vertical position, 0.23 ± 0.05 versus 0.29 ± 0.04, p < 0.001; horizontal position, 0.28 ± 0.06 versus 0.34 ± 0.04, p = 0.003). The dark-field signal from the vertical position correlated significantly with Tb.N (ρ = 0.46, p = 0.005), BV/TV (ρ = 0.45, p = 0.007), DA (ρ = -0.43, p = 0.010), and hydroxyapatite density (ρ = 0.53, p = 0.010). The calculated ratio of vertical/horizontal dark-field signal correlated significantly with Tb.N (ρ = 0.43, p = 0.011), BV/TV (ρ = 0.36, p = 0.032), DA (ρ = -0.51, p = 0.002), and hydroxyapatite density (ρ = 0.42, p = 0.049).</p><p><strong>Conclusion: </strong>Dark-field radiography is a feasible modality for drawing conclusions on bone microarchitecture in human cadaveric vertebral bone.</p><p><strong>Relevance statement: </strong>Gaining knowledge of the microarchitecture of bone contributes crucially to predicting bone strength in osteoporosis. This novel radiographic approach based on dark-field x-rays provides insights into bone microstructure at a lower radiation exposure than that of CT modalities.</p><p><strong>Key points: </strong>Dark-field radiography can give information on bone microstructure with low radiation exposure. The dark-field signal correlated positively with bone microstructure parameters. Dark-field signal correlated negatively with the degree of anisotropy. Dark-field radiography helps to determine the directionality of trabecular loss.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00524-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dark-field radiography imaging exploits the wave character of x-rays to measure small-angle scattering on material interfaces, providing structural information with low radiation exposure. We explored the potential of dark-field imaging of bone microstructure to improve the assessment of bone strength in osteoporosis.

Methods: We prospectively examined 14 osteoporotic/osteopenic and 21 non-osteoporotic/osteopenic human cadaveric vertebrae (L2-L4) with a clinical dark-field radiography system, micro-computed tomography (CT), and spectral CT. Dark-field images were obtained in both vertical and horizontal sample positions. Bone microstructural parameters (trabecular number, Tb.N; trabecular thickness, Tb.Th; bone volume fraction, BV/TV; degree of anisotropy, DA) were measured using standard ex vivo micro-CT, while hydroxyapatite density was measured using spectral CT. Correlations were assessed using Spearman rank correlation coefficients.

Results: The measured dark-field signal was lower in osteoporotic/osteopenic vertebrae (vertical position, 0.23 ± 0.05 versus 0.29 ± 0.04, p < 0.001; horizontal position, 0.28 ± 0.06 versus 0.34 ± 0.04, p = 0.003). The dark-field signal from the vertical position correlated significantly with Tb.N (ρ = 0.46, p = 0.005), BV/TV (ρ = 0.45, p = 0.007), DA (ρ = -0.43, p = 0.010), and hydroxyapatite density (ρ = 0.53, p = 0.010). The calculated ratio of vertical/horizontal dark-field signal correlated significantly with Tb.N (ρ = 0.43, p = 0.011), BV/TV (ρ = 0.36, p = 0.032), DA (ρ = -0.51, p = 0.002), and hydroxyapatite density (ρ = 0.42, p = 0.049).

Conclusion: Dark-field radiography is a feasible modality for drawing conclusions on bone microarchitecture in human cadaveric vertebral bone.

Relevance statement: Gaining knowledge of the microarchitecture of bone contributes crucially to predicting bone strength in osteoporosis. This novel radiographic approach based on dark-field x-rays provides insights into bone microstructure at a lower radiation exposure than that of CT modalities.

Key points: Dark-field radiography can give information on bone microstructure with low radiation exposure. The dark-field signal correlated positively with bone microstructure parameters. Dark-field signal correlated negatively with the degree of anisotropy. Dark-field radiography helps to determine the directionality of trabecular loss.

用于检测骨质疏松人体腰椎标本中骨微结构变化的暗视野射线照相术。
背景:暗场射线成像利用 X 射线的波特性测量材料界面上的小角散射,以较低的辐射暴露提供结构信息。我们探讨了骨微结构暗视野成像在改善骨质疏松症患者骨强度评估方面的潜力:我们使用临床暗视野放射成像系统、微型计算机断层扫描(CT)和光谱 CT 对 14 个骨质疏松症/骨质疏松和 21 个非骨质疏松症/骨质疏松的人体尸体脊椎(L2-L4)进行了前瞻性检查。暗视野图像是在垂直和水平样本位置获得的。骨微结构参数(骨小梁数,Tb.N;骨小梁厚度,Tb.Th;骨体积分数,BV/TV;各向异性程度,DA)使用标准体外显微 CT 测量,羟基磷灰石密度使用光谱 CT 测量。相关性采用斯皮尔曼等级相关系数进行评估:结果:在骨质疏松症/骨质疏松的椎体中,测得的暗视野信号较低(垂直位置,0.23 ± 0.05 对 0.29 ± 0.04,P 结论:暗视野放射成像是一种可行的方法:暗场射线摄影是一种可行的模式,可用于对人体尸体椎骨的骨微观结构得出结论:了解骨的微观结构对预测骨质疏松症患者的骨强度至关重要。这种基于暗视野 X 射线的新型放射学方法可以深入了解骨的微观结构,而且辐射量低于 CT 模式:要点:暗视野X射线摄影能以较低的辐射量提供有关骨微观结构的信息。暗场信号与骨微观结构参数呈正相关。暗场信号与各向异性程度呈负相关。暗场射线照相术有助于确定骨小梁丢失的方向性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信